SHORT DESCRIPTION OF THE HARDWARE-IN-THE-LOOP HYBRID RENEWABLE ENERGY SYSTEM AND BUILDING DEMONSTRATOR

DESTEC (Department of Energy, Systems, Territory and Constructions Engineering) University of Pisa

The hybrid renewable energy system and building demonstrator has been developed according to the hardware-in-the-loop logic, in which real elements of the physical system are coupled to emulators controlled in real time by dynamic simulations. It consists of the following devices:

- physical systems:

- 8 photovoltaic modules (2 kW-peak) and inverter;
- electrochemical storage (lithium batteries, 16 kWh);
- 2 thermal solar collectors (6 m²);
- 2 heat pumps (air-to-water, modulating, 5 kW, and water-to-water, on-off, 4 kW);
- 2 thermal storages (water tanks, 520 L each, with 3 internal serpentine heat exchangers);
- auxiliary components (pumps, heat exchangers, valves, controllers);
- meteorological station (air temperature, air humidity, global solar irradiance, wind direction and intensity, atmospheric pressure, precipitation);
- other sensors (electric energy meters, thermal energy meters and thermistors in various positions of the thermo-hydraulic loop);

- emulated systems:

- domestic hot water uses (tap opened by a valve, according to the requested profile);
- building envelope and space heating and cooling emitters (through an external heat exchanger and a three-way mixing valve, which controls the return temperature from the building emitters, in accordance with the dynamic simulation of the building, carried out in real time);
- wind microturbine (taking energy from the electricity grid according to the measured wind);
- micro-CHP engine (taking energy from the electricity grid and switching on an electric heater in the thermal storage);
- other electric energy uses (using electric heaters, with dimmers for modulation according to the profile of energy request).

The entire system is monitored and managed through a central acquisition and control software.

Contact: Prof. Daniele Testi, DESTEC, University of Pisa Tel.: +390502217109 E-mail: <u>daniele.testi@unipi.it</u>