1) Analizziamo il sistema fisico costituito da tutta l'automobile.

2) Diagramma di corpo libero (figura)

3) La forza d'attrito sulla ruota posteriore e la spinta di propulsione sulla ruota anteriore non c'è attrito perché il suo momento d'inerzia è zero e $I = mx = 0$

4) Scriviamo $F = ma sv xey e H = 0$

\[
\begin{align*}
N_1 + N_2 - mg \cos \alpha &= 0 \\
F_A + mgs \sin \alpha &= ma \\
\frac{1}{2}N_2 - \frac{1}{2}N_1 + F_Ah &= 0
\end{align*}
\]

Dalla quarta seconda equazione si nota che $\forall \chi$ l'accelerazione sarà massima se si massimizza F_A

\[
\begin{align*}
F_A &= m(\chi - g \sin \alpha) \\
N_1 &= \frac{mg \cos \alpha}{2} + \frac{F_A}{L} \\
N_2 &= \frac{mg \cos \alpha}{2} - \frac{F_A}{L}
\end{align*}
\]

Ricaviamo tutto in funzione di F_A e cerchiamo per quali valori di F_A sono soddisfatte le condizioni 1) e 2) del testo

1) Questa si scrive

$F_A \leq \mu_s N_1$ sostituiamo N_1

$F_A \leq \mu_s mg \cos \alpha + \frac{F_A}{L}$

$F_A \left(1 - \frac{\mu_s h}{L}\right) \leq \frac{mg \cos \alpha}{2}$

Notiamo che se

$1 - \frac{\mu_s h}{L} \leq 0 \Rightarrow \mu_s \geq \frac{L}{h}$

La condizione 1) è soddisfatta, essa quindi non è il limite

Quindi, per ora concludiamo che si ha, in funzione di μ_s

\[
\frac{L}{h} \leq \mu_s
\]

2) Per non impennare la ruota anteriore non deve staccarsi dal suolo, quindi

$N_2 \geq 0 \Leftrightarrow$ \[
\frac{mg \cos \alpha}{2} - \frac{F_A}{L} \geq 0
\]

$\frac{mg \cos \alpha}{2} \geq \frac{F_A}{L}$

$F_A \leq \frac{mg \cos \alpha}{2h}$

Nella regione μ_s sconosciuta dobbiamo ancora confrontare la 1) e la 2. La 1) è più stringente, e quindi è il limite max ad F_A, se $F_{A_{max 1}} < F_{A_{max 2}}$ quindi
CONCLUDENDO, ORA CONOSCIAMO LA \(F_{\text{max}} \) E \(\mu_s \)

Dove \(F_{\text{max}} \):

1) \[
\frac{m g L \cos \alpha}{2 \left(1 - \frac{\mu_s H}{L} \right)} = m \left(\alpha_1 - g \sin \alpha \right)
\]

\[
\alpha_1 = g \left(\frac{\sin \alpha \sqrt{1 - \frac{\mu_s H}{L}}}{2 \left(1 - \frac{\mu_s H}{L} \right)} \right)
\]

DERIVANDO RISPETTO AD \(\alpha \) E PONENDO \(\frac{d}{d \alpha} \) SI TROVA L'ANGOLO \(\alpha_1 \) PER IL QUALE \(\alpha_1 \) E' MASSIMA

\[
\cos \alpha_1 = \frac{\mu_s \sin \alpha_1}{2 \left(1 - \frac{\mu_s H}{L} \right)} = 0
\]

\[
\tan \alpha_1 = 2 \left(1 - \frac{\mu_s H}{L} \right) \quad \text{[VALIDO PER } \mu_s < \frac{L}{2H} \text{]}
\]

QUINDI ABBIAMO DETERMINATO L'ANGOLO CHE RENDE MASSIMA L'ACCELERAZIONE POSSIBILE

\[
\alpha = \begin{cases}
\arctan \left(2 \left(1 - \frac{\mu_s H}{L} \right) \right) & \text{PER } \mu_s < \frac{L}{2H} \\
\frac{2H}{L} & \text{PER } \frac{L}{2H} \leq \mu_s < \frac{L}{H} \\
\text{UN'IPERBOLE MENTRE } \tan \alpha_2 \text{ E' UNA COSTANTE}
\end{cases}
\]
Fatto il diagramma delle velocità, chiamando \(\vec{V}_1 \) e \(\vec{V}_2 \) le velocità di \(M_1 \) e \(M_2 \) dopo l'urto, scriviamo la conservazione dell'energia perché l'urto è elastico e la conservazione di \(P_x \) e \(P_y \) perché non agiscono forze (impulsive) esterne.

\[
\begin{align*}
\frac{1}{2} m_2 V_2^2 &= \frac{1}{2} m_1 V_1^2 + \frac{1}{2} m_2 V_2^2 \quad \text{(1)} \\
 m_1 V_1 \sin \beta &= m_2 V_2 \sin 30^\circ \quad \text{(2)} \\
 m_2 V_0 &= m_1 V_1 \cos \beta + m_2 V_2 \cos 30^\circ \quad \text{(3)}
\end{align*}
\]

Per ora usiamo angoli in gradi.

Moltiplichiamo la (2) per \(\cos 30^\circ \) e quella (3) per \(\sin 30^\circ \) e riordiniamo i termini:

\[
\begin{align*}
 m_2 V_2 \sin 30^\circ \cos 30^\circ &= m_1 V_1 \sin \beta \cos 30^\circ \quad \text{(2.1)} \\
 m_2 V_2 \sin 30^\circ \cos 30^\circ &= -m_1 V_1 \cos \beta \sin 30^\circ + m_2 V_0 \sin 30^\circ \quad \text{(2.2)}
\end{align*}
\]

\[
\begin{align*}
 m_1 V_1 \left(\sin \beta \cos 30^\circ + \cos \beta \sin 30^\circ \right) &= m_2 V_2 \sin 30^\circ \\
 m_1 V_1 \sin (\beta + 30^\circ) &= m_2 V_0 \sin 30^\circ \quad \Rightarrow \quad V_2 = \frac{m_2}{m_1} \frac{V_0 \sin 30^\circ}{\sin (\beta + 30^\circ)}
\end{align*}
\]

Dalla (2) si ha:

\[
V_2 = \frac{m_1}{m_2} \frac{V_1 \sin \beta}{\sin 30^\circ} \quad \Rightarrow \quad V_2 = \frac{V_0 \sin \beta}{\sin (\beta + 30^\circ)}
\]

Sostituiamo \(V_1 \) e \(V_2 \) nella equazione (1):

\[
\frac{m_2 V_2^2}{\sin^2 (\beta + 30^\circ)} = \frac{m_1 V_1^2}{\sin^2 (\beta + 30^\circ)} + \frac{m_2 V_2^2}{\sin^2 (\beta + 30^\circ)}
\]

\[
m_1 \sin^2 (\beta + 30^\circ) = m_2 \sin^2 30^\circ + m_1 \sin^2 \beta \quad \Rightarrow \quad m_1 \left[\sin^2 (\beta + 30^\circ) - \sin^2 \beta \right] = m_2 \sin^2 30^\circ
\]

Ora passiamo in radianti, \(30^\circ = \frac{\pi}{6} \). Ricordiamo l'identità nel testo:

\[
\frac{m_1}{2} \sin \left(2\beta + \frac{\pi}{6} \right) = m_2 \sin^2 \frac{\pi}{6} \quad \Rightarrow \quad \sin \left(2\beta + \frac{\pi}{6} \right) = \frac{m_2}{2m_1} \quad \text{[Ecco perché]}
\]

Ora ci vuole un po' di attenzione perché \(\beta \geq 30^\circ \) quindi \(2\beta + \frac{\pi}{6} \geq \frac{\pi}{2} \) e per un angolo nel 2° quadrante:

\[
\frac{2\beta + \frac{\pi}{6}}{6} = \pi - \arcsin \left(\frac{m_2}{2m_1} \right) \quad \Rightarrow \quad \beta = \frac{\pi}{12} - \frac{1}{2} \arcsin \left(\frac{m_2}{2m_1} \right)
\]
Perché una trasformazione sia reversibile è necessario che gli scambi di calore avvengano tra corpi la cui differenza di temperatura è infinitesima.

Il gas scambia calore col ghiaccio quindi anche esso si trova a 0°C.

La compressione è dunque isoterma.

Calcoliamo il lavoro fatto dal gas

\[W = - \int_{V_0}^{V_1} P \, dV = - nRT_0 \int_{V_0}^{V_1} \frac{dV}{V} = - nRT_0 \ln \left(\frac{V_1}{V_0} \right) = nRT_0 \ln \left(\frac{V_0}{V_1} \right) \]

Il gas ovviamente cede calore al ghiaccio

\[Q = - Lf \]

Il gas rimane a 0°C, quindi \(\Delta U = 0 \)

Applichiamo il 1° principio al gas

\[\frac{Lf}{nRT_0} = \ln \left(\frac{V_0}{V_1} \right) \Rightarrow \frac{Lf}{nRT_0} = \frac{V_0}{V_1} = \frac{V_0}{V_0 \, e} \Rightarrow V_1 = V_0 \, e \]

Ora, \(V_0 = \frac{nRT_0}{P_0} \) e \(n = 1 \)

\[V_1 = \frac{RT_0}{P_0} e \cdot \frac{Lf}{nRT_0} \approx 1.2 \cdot 10^{-3} \, m^3 \]