

Some aspects of viscous effects for geomaterials and modelling

Hervé Di Benedetto (ENTPE/CNRS)

With the help of PhD works from : Mondher Neifar (97), Cedric Sauzéat (03), Damien P V Bang (04), François Olard (04), Antoine Duttine (05), Brice Delaporte, Alan Ezaoui, Doan T.H.,...

points on focus

- Viscous effects
- Experimental observations
 - Dry sands, sand-clay mixtures, bituminous mixtures
 - Apparatuses : triaxial, hollow cylinder, C/T test, annular shearing
- Modelling : 3 component model and extension
 1Dim & 3Dim

Definition of viscous effects

- Observed during creep, relaxation, More generally : change in the stress-strain curve(s) when changing the rate of loading
- Seems to be present for all? geomaterials even dry sand

Experimental investigations

Wave propagation sensors (ISMES type)

Compression wave transducers

Interpretation and modelling 3 components model framework and extension

The 3 component model can describe the observed behaviour → Determination of EP_i and V_i first step small strain domain

Small strain domain Linear behaviour Soils : depend on materials - sand → elastic - clay, soft rocks → visco-elastic Bituminous materials : always viscous →visco-elastic

Very small sensitivity Experimental findings for sands (many tests) Cycles in the small strain domain (after creep or relaxation) in different directions at different rates For tested sands and sand/clay mixtures → No viscous effect ✓ (main strain & « fast » loading « quasi » elastic behaviour in a wide range → 3D Hypoelastic model (DBGS)

Time-temperature superposition principle (TTSP): Thermorhologically simple behaviour

 The complex modulus curve is unique and can be described when changing ω (from -∞ to +∞) or T (from very low to high temperature) or changing both ω and T

Models proposed following the geomaterials		
<u>Type of model</u>		
•New isotach : $\sigma^{v} \sim \sigma^{f}$ (cf. viscous coefficient β)	•TESRA •Pure VE	•General TESRA •VE
Low plasticity Clays Soft rocks Bituminous materials 	Type of materials Clean sands Cement mixed soils (& ageing)	Low plasticity Clays Chiba Gravels Soft rocks
		HDB 09/06-67

f(t)

Conclusion

- Investigation on sands, sand/clay mixtures and bituminous materials
- Similarity of behaviour for these materials
- For certain loading conditions : linear behaviour
- Viscous effects non negligible (small or very important) act from small to large strain domain
- Non linearities and irreversibilities
- 3 components model appears to be a powerful formalism which can be extended

