Probabilistic assessment of geotechnical objects by means of MONTE CARLO METHOD

Egidijus R. Vaidogas Vilnius Gediminas technical university, Lithuania ERASMUS/SOCRATES program, 2007

What is the principal objective?

If you think that safety is expensive, you should try to have an accident !

To be brief...

GEOTECHNICAL OBJECT = STRUCTURE

Definition derived from EN 1990:2002

Structure = organised combination of connected parts, including fill placed during execution of the construction works, designed to carry loads and provide adequate rigidity

- Foundations
- Anchorages
- Retaining structures
- Embankments
- Slopes
- Excavations

CONTENTS OF LECTURE

I. THEORETICAL PART

- 1. Introduction to structural reliability
- 2. Reliability & failure probability of structures
- 3. Estimation of *failure probability* by means of Monte Carlo method

II. COMPUTER EXERCISES

- 1. Introduction to *AntHill* computer code
- 2. Stability of slope excavated in a clay layer
- 3. Variability of load capacity of a ground anchor
- 4. Reliability of concrete friction pile
- 5. Reliability of gravity retaining wall
- 6. Reliability of cantilever retaining wall

Introduction to structural reliability

PART I Introduction to structural reliability

I. Structural reliability 1/10

Failures of structures

Structures unfortunately fail ...

Failure of a structure = insufficient load bearing capacity or inadequate serviceability of a structure or structural element

Failure = exceedance of limit state

I. Structural reliability 2/10

Design situations*

Failure can take place in one of the three situations:

- Persistent design situations (situation of normal use)
 Transient design situations** (construction, repair, demolition)
- Accidental design situations (fire, explosion, impact)

- * Are mentioned in Eurocode 7 (prEN 1997-1: 2001(E). Geotechnical design. Part 1: General rules)
- ** Only the transient design situations are mentioned in Eurocode 7

I. Structural reliability 3/10

The risk of death as a result of structural failure*

Activity	Approximate death rate ×10 ⁻⁹ deaths/hr exposure	Estimated typical exposure (hr/year)	Typical risk of death ×10 ⁻⁶ / year
Construction work	70200	2200	150400
Manufacturing	20	2000	40
Coal mining (UK)	210	1500	300
Building fires	13	8000	824
Air travel	1200	20	24
Car travel	700	300	200
Train travel	80	200	15
Structural failures	0,02	6000	0,1

* Melchers, R. E. (1987) Structural reliability Analysis and Prediction. Chichester: Ellis Horwood/Wiley

I. Structural reliability 4/10

Why should we be concerned about structural reliability

Individuals: involuntary of risk due to structural failures

The risk levels for buildings and bridges are usually associated with *involuntary risk* and are much lower than the risk associated with voluntary activities (travel, mountain climbing, deep see fishing)

Society: failure results in decrease of confidence in stability and continuity of one's surroundings

Society is interested in structural reliability only in the sense that a structural failure with significant consequences shatters confidence in the stability and continuity of one's surroundings

Engineers: the need to apply novel structures and novel construction methods generates interest in safety

Design, construction, and use of *new* or *particularly hazardous* systems should be of particular interest in their safety (new and unique bridge, new off-shore structure, NPP, chemical plant, liquefied gas depot)

I. Structural reliability 5/10

Human errors cause up to 95% of failures

Structural accidents: phase in which error occurred*

Phase	Percentage of cases (493 cases)	Percentage of total cost damage (493 cases)
Design	37	43
Construction	35	20
Design & construction	18	22
Occupation	5	11
Others	5	4

* Hauser, H. (1979) Lessons from European failures, Concrete international, ACI, 11(12), p. 21-25.

I. Structural reliability 6/10

Failures of FORMULA 1 cars

TOP SPEED

MASS

AERODYNAMIC PROPERTIES CHANCE OF FAIL-SAFE BEHAVIOUR (RELIABILITY)

I. Structural reliability 7/10

Structural reliability theory: arguments in favor

(accidental actions)

I. Structural reliability 8/10

Structural reliability theory: arguments against

- The need to study probability calculus and statistics
- The need to collect statistical data on structures and actions (loads)
- The need to move outside the "safe and customary" area ruled by design codes of practice
- Do you know the answer on the question "How safe is safe enough?" ?

I. Structural reliability 9/10

The need to bridge a gap: how to join quickly?

I. Structural reliability 10/10

The textbook

PROBABILISTIC ASSESSMENT OF STRUCTURES USING MONTE CARLO SIMULATION Background, Exercises, Software (P. Marek, J. Brozzetti and M. Guštar, P.Tikalski, editors)

Publisher: ITAM CAS CZ Academy of Sciences of the Czech Republic, Prague, 2001.

The textbook with the CD-ROM is the final product of a pilot project sponsored by the Leonardo da Vinci agency, European commission, Brussels, "TERECO - Teaching reliability concepts using simulation", 1999 - 2001.

For more information visit the website: http://www.noise.cz/SBRA

Reliability & failure probability

PART II Reliability & failure probability of structures

II. Reliability & failure probability 1/10

Basic definition Reliability = 1 – failure probability $P_s = 1 - P_f$

Structure can either fail or survive: $P_s + P_f = 1$

- *Failure* *: an insufficient load-bearing capacity or inadequate serviceability of a structure or structural element.
- *Limit state*: a state beyond which the structure no longer satisfies the design performance requirements.
- * ISO 2394: 1998 (E). General principles on reliability for structures. ISO, Geneve, 1998.

II. Reliability & failure probability 2/10

Reliability is usually not calculated!

SURVIVAL OF STRUCTURE (fulfillment of specified requirements)		FAILURE OF STRUCTURE (exceedance of irreversible or reversible limit state)		
$P_s = P(survival)$		$P_f = P(\text{failure})$		
P (s	survival) +	P (failure)	= 1	
	$P_s + I$	$P_{f} = 1$		
Structure 1	$P_{s1} = 0,99$	995	$P_{f1} = 0,0005$	
Structure 2	$P_{s2} = 0,99$	9	$P_{f2} = 0,001$	
Difference	0,05%		200%	

II. Reliability & failure probability 3/10

How safe is safe enough?

Tolerable failure probabilities given in ENV 1991-1*

Limit state	Tolerable failure probability (design working life)	Tolerable failure probability (one year)
Ultimate	723 × 10 ⁻⁷	13 × 10 ⁻⁷
Fatigue	0,0668…723 × 10 ⁻⁷ *	~
Serviceability	0,0668	0,00135

* Depends on degree of inspectability, reparability, and damage tolerance.

* ENV 1991-1: 1993. Basis of design and actions on structures. CEN, Brussels, 1993.

II. Reliability & failure probability 4/10

The way to failure probability

II. Reliability & failure probability 5/10

The role of data

- Statistical data reflects the ubiquitous uncertainty in structural parameters and loads.
- Statistical data is used to fit *probability distributions* of the structural parameters and loads.
- Statistical data *determine* the value of the failure probability P_f in the end.

- Data on material properties
- Data on geometrical quantities
- Data on direct actions (loads) and indirect actions
- Data on model uncertainties

II. Reliability & failure probability 6/10

Processing the data

Estimation of distri – bution parameters:

$$\mu = \overline{x}$$

$$\sigma^2 = s^2$$

Fitting a probability distribution

II. Reliability & failure probability 7/10

Vector of basic variables

$$X = (X_1, X_2, \dots, X_n); \quad x = (x_1, x_2, \dots, x_n)$$

random variables

particular values

Visualisation of *X* and *x*

II. Reliability & failure probability 8/10

Probability density function (PDF)

Joint PDF of basic variables

$$f(\mathbf{x}) = f(x_1) \cdot f(x_2) \cdot \dots \cdot f(x_n)$$

in the case that basic variables X_i are *independent*

- Limit state function: a function g of the basic variables, which characterizes a limit state when $g(x_1, x_2, ..., x_n) = 0$; g > 0 identifies with the desired state and g < 0 with the undesired state [state beyond the limit state].
- Basic variable X_i: a part of a specified set of variables, X₁, X₂, ..., X_n, representing
 physical quantities which characterize actions and environmental influences, material
 properties including soil properties, and geometrical quantities.

II. Reliability & failure probability 10/10

The problem is an integral, not the reliability itself!

$$P = P(g(X) = 0) = \int \dots \int f_X(x) dx$$

Failure domain
$$D_f = \{x / g(x) \le 0\}$$
$$x_1, x_2, x_3, \dots$$

The role of model
$$The role of data$$

Monte Carlo method

PART III Monte Carlo method

III. Monte Carlo method 1/10

The power of Monte Carlo method

MECHANICS (ANALYSIS OF STRUCTURES)

STOCHASTICS (PROBABILITY CALCULUS)

III. Monte Carlo method 2/10

Where can it be useful?

- Structural Reliability
- Structural aspects of risk analysis
- Solving special problems, e.g., sensitivity analysis

III. Monte Carlo method 3/10

Only one small "detail" is necessary to run the business!

1. Generator of random numbers is in your *pocket calculator*

$$\begin{array}{c|c} & & & \\ 0 & u = 0.321577 & 1 & u \end{array}$$

$$u_1 = 0.405255$$

 $u_2 = 0.764611$
 $u_3 = 0.041139$
 $u_4 = 0.013642$

j 30

III. Monte Carlo method 4/10

Only one small "detail" is necessary to run the business!

2. Generating values from the uniform distribution U(0, 1)

1 9

11

III. Monte Carlo method 5/10

Only one small "detail" is necessary to run the business!

3. Generalization to the multidimensional case is beneficial

Evaluating multidimensional integrals & solving integral equations

Solving systems of differential equations

Solving systems of linear equations

See, e.g., Rubinstein, R. Y. (1981) Simulation and the Monte Carlo method, Willey.

III. Monte Carlo method 6/10

How to evaluate multiple integral?

$$P_f = P(g(X) \le 0) = \int \dots \int f_X(x) \, \mathrm{d} x$$

- Exact analytical methods
- Classical methods of numerical integration
- Approximate analytical methods (FORM/SORM methods)
 SIMULATION (MONTE CARLO) METHODS:
 - Direct Monte Carlo method
 - Variance reduction techniques

 Methods utilising knowledge on mechanical model (response surface method, directional simulation)

III. Monte Carlo method 7/10

Failure probability is a mean of random variable

III. Monte Carlo method 8/10

Estimate of failure probability

III. Monte Carlo method 9/10

Generating values of basic variables: inverse transform

III. Monte Carlo method 10/10

Generating values of basic variables: in general

Generating *individual values* of basic variables

Inverse transform method
Inverse transform method
Composition metistical Lity HIDDEN ds
Acceptance-rdN COMPUTER CODES
Composition method, other methods
Simple transformation from normal
Acceptance-rejection method

Generating vectors of basic variables

Multi-normal distribution	Special method
Non-normal vectors with correlated components	Methods based USUALLY HIDDEN 's from normal
General case of dependence	Multivariate transformation method, multivariate acceptance-rejection method

For more visit, e.g., http://random.mat.sbg.ac.at/literature/

Monte Carlo method

The end of theoretical part