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Outline

1. Brief Background
• emphasis field measurements

2. Present a Number of Applications
• static and dynamic problems

3. Show Importance of Field Seismic 
Measurements in Predicting the 
G – log γ and τ – γ Curves

4. Concluding Remarks



1. Soil Profile 2. Field: Linear 
Vs (and Vp)

3. Lab: Linear and 
Nonlinear G and D
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1.  Background: Role of Stress Wave 
Measurements

Gmax = ρvs
2



Source Point 1 Point 2

Stress Wave (Seismic)
Measurements in the Field

Objective:  measure time, t, for a given stress 
wave to propagate a given
distance, d ... then velocity = d/t

d 

Key characteristic:  small-strain (linear) 
measurements



Field Measurements with
Compression (P) and Shear (S) Waves
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1.  Crosshole Test

2.  Downhole Test

First “Geotechnical” Field 
Seismic Methods (1970s) 

Direct
P and S 
Waves



Modified Seismic Method (1980s)

SCPT adapted 
from 1970s 

Downhole Test

1. Seismic Cone Penetrometer Test (SCPT)

Direct S Wave



2. P-S Suspension Logger

1. Surface Wave (SASW) Test

*

Recent Field Methods (1990s)

Direct P 
and S Waves

Measure
Rayleigh

(R) Waves



2.  Increasing the Role in Solving 
Geotechnical Engineering Problems

Case Histories and Applications

• static conditions

• dynamic conditions



Solutions - Static Conditions
1.  Static Loading

• footing settlements
• retaining wall movements

2.  Site Characterization
• layering, ground water table, etc.
• underground cavity detection
• tunnel investigations
• pavement studies

3.  Process Monitoring
• grouting evaluations
• ground improvement studies
• areas of deterioration

4.Link Between Field and Lab



Static Application #1:
Predicting Footing Settlements
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Load Cell

Static Vertical 
Load

300 mm Reinforced 
Concrete 
Footing

900 mm

3-Point Loading 
Frame

Nonplastic Silt (ML):
γt = 121.5 pcf Corrected SPT = 17 bpf

(19.1 kN/m3) Shear wave velocity: 
Vs = 600 fps (183 m/s)

Soil, Footing and Loading 
Arrangement



Telltales Beneath the Footing
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Loading Footing with T-Rex



Typical Settlement Measurements: 
Top of Footing Near the Center
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vibrations induced 
from loading apparatus 
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Typical Settlement Measurements: 
Top of Footing Near the Center

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0

S
et

tl
em

en
t,

 in
.

2500020000150001000050000
Load, lb

-0.060

-0.040

-0.020

0

S
ettlem

en
t, cm

100806040200
Load, kN

“Smoothed”
Load - Settlement 

Curve



v

Typical Settlement Measurements 
with Telltales: 15 cm Beneath 

Center of Footing

Small permanent deformation, 
but within precision of 
instrumentation.
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Comparison of Measured 
and Predicted Settlements
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Static Application #2: Tunnel 
Investigation 

Concrete
Liner

Grout

Rock

tconcrete

tgrout



Some Questions

1. Quality of concrete liner?
2.  Thickness of concrete liner?
3. Quality of grout in crown?
4.  Thickness of grout in crown?
5.  Any voids behind liner?
6. Stiffness of rock behind liner?

(Answered all Questions)
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Conducting SASW Tests

Small Hammer

Accelerometers
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Results:
1. high-quality 

concrete
2. thickness: 

~ 0.3 m
3. no voids
4. rock stiffer 

than liner



Static Application #3: Evaluating
Soil Improvement at a Blast-

Densification Field Trial

Bulldozer
Source



Blasting at Loose Sand Site

t = 2 sec

t = 3 sec

t = 0 sec

t = 5 sec
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Question:
Did test plan work?

Answer:
No.  Need to modify.
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Question:
Did site improve 
with time?

Answer:
Slightly, but still 
less than “before 
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1. Machine-Foundation Design

2. Vibration-Isolation Barriers

3. Earthquake Engineering
• site response, soil-structure 

interaction, liquefaction, etc.

4. Link Between Field and Lab

Solutions - Dynamic Conditions



Dynamic Application #1: Predict 
Ground Motions During Earthquake 

Shaking
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Required:  Dynamic Stress-Strain 
Curves in Shear in the Field
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Example Site

La Cienega Overpass Bridge

1994 Northridge Earthquake (Mw = 6.7)

Epicentral Distance about 28 km

Peak Shearing Strain, γ , less than 0.20%

Resolution Of Site Response Issues in the 
Northridge Earthquake (ROSRINE)

Deep Soil Deposit (~ 300 m)



1994 Northridge Earthquake:
Site of La Cienega Overpass Bridge



1994 Northridge Earthquake:
La Cienega Overpass Bridge 



150

100

50

0

Depth,
m

0.200.150.100.050.00
Shearing Strain, γ , % 

Peak Shearing Strains:  La Cienega

Mean 

Mean - σ

Mean + σ

from Dr. Walt Silva, 
Pacific Engineering and Analysis



Soil

Fixed
Base

Accelerometer

Coil 
Support 
System

F
lu

id

F
lu

id

Top Cap

Drive
Coil

Magnet

Torsional Resonant Column

Torsional 
Excitation



10-5 10 010 -110 -4 10 -3 10 -2

Shearing Strain, γ, %

0

Lab Curve

La Cienega
Depth = 185 m
Silty Sand (SM)
σo' = 25 atm

2000

1500

500

Shear 
Modulus, 

G, ksf
1000

EQ

Resonant Column Test of 
Intact Soil Specimen



10-5 10 010 -110 -4 10 -3 10 -2

Shearing Strain, γ, %

0

Field

Lab Curve

La Cienega
Depth = 185 m
Silty Sand (SM)
σo' = 25 atm

2000

1500

500

Shear 
Modulus, 

G, ksf
1000

EQ

Comparison of Field and 
Laboratory Gmax Values

Gmax =         VS
2

γt
g



Field

Lab Curve
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Subtitle: The overwhelming need for in-
situ seismic measurements in 
nonlinear static and dynamic 
analyses.

Key: Seismic measurements link 
field and laboratory tests.

General Applications (Static and 
Dynamic):  Impact of “Sample 
Disturbance” on G - log γ and 

τ - γ Curves
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“Actual” Field τ−γ Curve
Compared to Potential Range
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• Designated as first permanent geologic 
repository for high-level radioactive 
waste in U.S.

• DOE has been studying the site for more 
than 25 years

• UTexas is involved with field seismic tests:
1.  on top of the mountain, 
2.  in the exploratory tunnels, and 
3.  at the proposed site of the Waste    

Handling Building (WHB).

Dynamic Application #2: 
Yucca Mountain Site, Nevada
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Recent Testing: Yucca Mountain Site

Top of Yucca Mountain
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Generalized Geologic Framework 
Model of Yucca Mountain Site
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Liquidator Working on Top of 
Yucca Mountain



Recording Surface Waves 
up to 1000 m Long

Liquidator



Source
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Receiver #2

Testing in Tunnel Beneath Mountain
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Concluding Remarks

� Stress wave (seismic) measurements play 
an important role in geotechnical 
engineering. 

� This role will continue to grow in solving 
static and dynamic problems. 

� The growth will involve four areas: 
1. education, 2. integration, 3. automation, 
and 4. innovation.
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