University of Pisa – June 30th, 2017

ON LEVEES

Relevant research activities at the University of Pisa (B. Cosanti; D. Lo Presti ; N. Squeglia)

Barbara Cosanti, Ph.D.

Design & Constructions:

GEOTECHNICAL INVESTIGATIONS

TO CLARIFY THE CAUSES OF FAILURE

TO DESIGN APPROPRIATE REPAIR OF THE FAILURES

~ 3 km

TO DEFINE THE LEVEE SYSTEM CONDITIONS

TO IDENTIFY THE RISK AREAS

~ 30 km

BUDGET PLANNING FOR LEVEE IMPROVEMENT

GEOTECHNICAL INVESTIGATIONS

- 4 boreholes (15 m depth)
 (4 Shelby samples retrieved from each borehole for laboratory testing)
- 15 CPTu (10 m depth) (for every CPTu 1 or 2 dissipation)

(for every CPTu 1 or 2 dissipation tests carried out in the foundation soil).

15 continuous sampling (4 m depth) carried out using a specially devised micro-stratigraphic sampler (AF shallow core system, Principe et al. 1997)

(sample compaction measuring each 50 cm)

- 35 boreholes* For each borehole:
 - 4 Osterberg samples retrieved for laboratory testing
 - 2 Casagrande piezometer installations
 - 4 Lafranc tests
- 🗘 CPTu (20 m depth) every 200 m
- 2D Electric Resistivity Tomography (ERT) every 200 m carried out along cross sections of the embankment

* In the district of Lucca all the boreholes were carried out from the embankment bank because of the limited width of the crest

1 FAILURE AREA

BOREHOLES

GEOTECHNICAL MODEL

CPTU

CONTINUOUS SAMPLING

NATURAL UNIT WEIGHT

> CONTINUOUS SAMPLES

NATURAL UNIT WEIGHT [kN/m ³]									
	Sandy silt	Silty sand	Sand						
Continuous samples	12.8	12.3	17.7						
Shelby samples	19.6	19.1	18.5						

- Following investigation campaign:

-Shelby Osterberg √

Very low values but consistent with the results of CPTu indicating $\rm D_R$ of about 10%

B. Cosanti, Ph.D.

- Very loose soils

γn

Likely internal erosion phenomenon <

2 WHOLE LEVEE SYSTEM

economical and expeditious tool

 \Rightarrow CPTu

results need to be calibrated against borehole-logs B. Cosanti, Ph.D.

Ic from CPTu

Ic from reference borehole

Design & Constructions:

STABILITY ANALYSES: stationary flow

STABILITY ANALYSES: steady state Vs transient flow

Transient flow

(FEM analyses)

None of examined "risky sections" can sustain the flow

Partial saturation of the embankment soil mainly contributes to its stability in the absence of filtration, leading to acceptable safety margins

10 days are necessary to approach the steady state flow conditions

permanent flow condition is generally too cautious

BUT (probably) it was reached during December 2009 event B. Cosanti, Ph.D.

✓ construction details unknown

✓ limited available data → boreholes carried out from the levee bank (unreachable levee crest: width between 1.2-3 m) \Rightarrow lack of grain distribution curves from samples retrieved from the embankment body in the Lucca District

the body of the embankment

OVERTOPPING & EXTERNAL EROSION

Case history on the effect of overtopping on a trial embankment in stabilized soil

CROSS SECTION \rightarrow h=2.6m; slope=1/2-2.5

 $\ensuremath{\text{PLAN SHAPE}}\xspace \rightarrow$ the embankment enclosed a reservoir

TWO TEST SECTIONS: $T1 \rightarrow CP$ $T2 \rightarrow CP + 2\%$ lime

8.531

OVERTOPPING TESTS

✓ 6 hours

 \checkmark 15 cm or more of sheet-flow overtopping

Inspection, Maintenance, Monitoring & Remediation:

MONITORING SYSTEM

MONITORING CAMPAIGN Observation time: 7/09/2012 - 7/09/2013

 ✓ Shallower moisture sensors are especially sensitive to the water infiltration after rainfall

✓ Diaphragm effectiveness

SENSOR GROUP B - VWC= VWC(t)

FALL-WINTER 2012/2013

✓ diaphragm effectiveness

The measured settlements were compared against the results of a 2D FEM analysis and a 1D simplified approach

> Need for full-scale experiments in order to highlight the actual behaviour of soil

On levee monitoring:

Embankments of a lamination basin

SETTLEMENTS MONITORING FOR

Inspection, Maintenance, Monitoring & Remediation:

PREVISION METHODS FOR QUALITY CONTROLS

B. Cosanti, Ph.D.

THE EQUIPMENT

Mini-cone: 8 mm diameter Load cell located above the cone

Aluminum mold: Diameter = 320 mm; Height = 210 mm

Top boundary \rightarrow rigid Lateral & bottom boundaries \rightarrow flexible (provided with latex membranes)

TESTED MATERIALS				5 <		TCINO SAND SILT XTURE	s		PRELI/ CHECK EQUI	NINAF OF TI PMEN	2Y -1E T
M	SI IXT	LT URE	5	USED FOR SIE\) for The re /ed to	THE CO FURBIS	ONSTRU 5HMENT NATE T	CTION OF EX HE FRA	I OF NEW XISTING S ACTION W	/ LEV STRUC ITH	EES AND TURES (+ > 2 mm
-	Soil	$\gamma_{dmax} \over kg/m^3$	W _{opt} %	e _{opt}	(Sr) _{opt} %	LL	PL	PI	AASHTO M 145	Gs	d ₅₀ mm
-	FR	2047	9.43	0.33	78	26÷31	18÷24	7÷10	A4÷A6	2.72	0.002÷0.025
	PC	1950	10.7	0.39	74	25	19	6	A4	2.71	0.085
	DD	1820	13.1	0.49	73	31.5	23.5	8	A4	2.71	0.01
-	TC	1895	12	0.42	77	25	6	19	A6	2.69	0.02
		•							PARTIA	LLY S	

 \checkmark Samples are reconstituted in 5 layers in a stainless steel mold √The soil is prepared at a given w and compacted to a given γ_d using static compaction ✓ The compaction effort, required to consolidate each layer and the whole sample, is recorded:

$$E = \left(\frac{1}{2} \cdot \sum_{i=1}^{5} F_i \cdot \delta_i\right) / \sum_{i=1}^{5} V_i$$

EX	PE	R]	IM	EN	JT	A		PR	00	GR	AM
Soil type	Boundar	y stresses	U	Jnit weigh	ıt	Water	content				
Abbreviation	σ'v [kPa]	σ' _h [kPa]	γ _đ [kN/m ³]	γ_{dmax} [kN/m ³]	Vd∕γđmax	w [%]	Wopt [%]	E [MJ/m ³]	σ' _{pmax} [kPa]	Qc IMPal	FINE-GRAINED SOILS
DD	30	30	14.00	17.00	0.82	13.2	-	0.395	8224	2.807	
DD	50	50	14.56	17.85	0.82	13.2	-	0.238	6157	1.786	A COLORING
DD	80	80	14.56	17.85	0.82	13.2	13.1	0.299	6752	1.512	
DD	30	30	16.38	17.85	0.92	13.2		1.324	24474	4.751	
DD	50	50	16.38	17.85	0.92	13.2	-	1.413	24523	4.063	a creation of the second
DD	80	80	16.38	17.85	0.92	13.2		1.501	24523	4.990	
PC	30	30	15.60	19.13	0.82	10.8	10.7	0.62	13731	3.274	
PC	50	50	15.60	19.13	0.82	10.8		0.697	14712	3.648	o petially
PC	80	80	15.60	19.13	0.82	10.8		0.545	13731	3.850	Paul une a
PC	30	30	17.55	19.13	0.92	10.8		2.407	39627	7.191	Annealteal
PC	50	50	17.55	19.13	0.92	10.8		2.76	40707	7.877	Saucun
PC	80	80	17.55	19.13	0.92	10.8		2.211	36979	7.603	Dervis dervis
FR	30	30	18.50	2.05	0.92	12.0		4.123	46864	6.533	Boundary
FR	30	30	18.50	2.05	0.92	12.0		3.315	43136	6.535	conditions:BC1
FR	30	30	18.50	2.05	0.92	12.0		2.938	37465	6.767	
FR	30	30	18.00	2.05	0.90	12.0		1.735	22730	3.254	DD; PC:
FR	30	30	18.00	2.05	0.90	12.0		1.735	24005	3.568	$\gamma_{\rm d} = 80 \div 92\% \gamma_{\rm dmax}$
FR	30	30	18.00	2.05	0.90	12.0		1.828	24400	4.056	(Modified Proctor)
FR	30	30	16.00	2.05	0.80	12.0		0.511	8608	1.843	W = W
FR	30	30	16.00	2.05	0.80	12.0	9.43	0.463	8313	1.736	••• opt
FR	30	30	16.00	2.05	0.80	12.0		0.475	7823	2.022	FR:
FR	30	30	16.00	2.05	0.80	4.0		0.26	10103	2.036	$\mathbf{v}_{\rm c} = 80^{\circ}/_{\circ}\mathbf{v}_{\rm c}$
FR	30	30	16.00	2.05	0.80	4.0		0.307	9809	1.479	(Madified Proctor)
FR	30	30	16.00	2.05	0.80	4.0] [0.346	10790	1.827	(Modified Proctor)
FR	30	30	16.00	2.05	0.80	8.0		0.579	15990	3.077	w= 4; 8; 12%
FR	30	30	16.00	2.05	0.80	8.0		0.622	15891	2.533	
FR	30	30	16.00	2.05	0.80	8.0		0.564	15303	2.455	B. Cosanti, Ph.D.

TEST RESULTS

TEST RESULTS

Water content after sample formation & elapsed time effects

Practical application of the method:

- Cosanti B., Squeglia N., Lo Presti D. C. (2013). "Geotechnical Characterization of the Flood Plain Embankments of the Serchio River (Tuscany, Italy)". Conference to Commemorate the Legacy of Ralph B. Peck, 7th International Conference on Case Histories in Geotechnical Engineering and Symposium in Honor of Clyde Baker. Wheeling, IL (CHICAGO, IL AREA). April 29 – May 4, 2013.
- 2. Squeglia N., Cosanti B., Lo Presti D. C. (2013). "Stability Analysis of the Serchio River Flood Plain Embankments (Tuscany, Italy)". Conference to Commemorate the Legacy of Ralph B. Peck, 7th International Conference on Case Histories in Geotechnical Engineering and Symposium in Honor of Clyde Baker. Wheeling, IL (CHICAGO, IL AREA). April 29 – May 4, 2013.
- 3. Cosanti, B.; Lo Presti, D. C.; Squeglia, N. (2014). "An innovative method to evaluate degree of compaction of river embankments using CPT". CPT14 3rd International Symposium on Cone Penetration Testing. May 12 14, 2014. Las Vegas, Nevada.
- 4. Cosanti, B.; Lo Presti, D. C., Squeglia, N. (2014). "An Innovative Method to Evaluate Degree of Compaction of River Embankments.". XII IAEG Congress. Torino, September 15 19, 2014
- 5. Cosanti, B.; Lo Presti, D. C. (2014). "A monitoring system to study seepage through river embankments". XII IAEG Congress. Torino, September 15 – 19, 2014
- 6. Lo Presti, D.C.; Cosanti, B.; Fontana, T.; Guidi, P. (2014). "Use of plastic diaphragm to improve the resistance of river embankments against hydraulic failures". XII IAEG Congress. Torino, September 15 – 19, 2014
- 7. Cosanti B. (2014) Guidelines for the geotechnical design, upgrading and rehabilitation of river embankments. PhD Thesis, University of Pisa.

- 8. Cosanti, B.; Squeglia, N.; Lo Presti, D.C.F. (2014). "Analysis of existing levee systems: the Serchio river case". RIG. Italian Geotechnical Journal. XLVIII (4) 2014. AGI. Pàtron Editore Bologna (49-68).
- 9. Cosanti, B.; Squeglia, N.; Lo Presti, D.C.F. (2016). "A case history on levee external erosion". RIG. Italian Geotechnical Journal. (3), 2016, AGI. Pàtron Editore Bologna (37-44).
- Squeglia, N.; Cosanti, B.; Lo Presti, D.C.F. (2016). "Importance of full scale tests for the design of levees". RIG. Italian Geotechnical Journal. (4), 2016, AGI. Pàtron Editore Bologna (45-56).
- Lo Presti D., Giusti I., Cosanti B., Squeglia N., Pagani E. (2016). "Interpretation of CPTU in "unusual" soils". RIG. Italian Geotechnical Journal. (4), 2016, AGI. Pàtron Editore Bologna (14-33).
- 12. Cosanti, B.; Lo Presti, D.C.F.; Squeglia, N. (2016). "Evaluating degree of compaction of levees using Cone Penetration Testing". RIG. Italian Geotechnical Journal (under revision).

Thank you for your attention

<u>barbara.cosanti@gmail.com</u>