Workshop on Penetration Testing and other Geomechanical Issues

University of Pisa, June 14th, 2016

New developments on the mechanical characterization of levees using CPT_U

Barbara Cosanti D. Lo Presti

LEVEES

also called DIKES, DIGUES or FLOOD DEFENCE EMBANKMENTS

✓ Earth structures that, under normal conditions, are not subject to the action of waves and currents \Rightarrow poor attention

✓ part of flood defence systems

 \checkmark provide protection against fluvial and coastal flood events

-LEVEES & FLOOD RISK

Need for

 GOOD PERFORMANCE on the OCCASIONS when they____ are LOADED (STORMS & FLOODS)
✓ Good design
✓ Good inspection
✓ Routine maintenance

LEVEES & RESILIENCE

Capacity to accommodate:

ABILITY TO RETAIN AND RECOVER FUNCTIONAL PERFORMANCE UNDER THE STRESS OF KNOWN AND UNKNOWN ADVERSE EVENTS (SCHULTZ et al., 2012)

4

 \checkmark the loading situations for which they are being designed without damage and breach due to potential failure mechanisms

 \checkmark situations in which they are overtopped: levees should be designed so that they do not fail for an extended period of time that reflects the time required to evacuate the flood area

In the event of any breach, the levees should be readily repairable. BARBARA COSANTI, PhD

EXISTING LEVEES

✓ do not respect modern design and construction standards

 \checkmark irregular in the standard and nature of their construction

✓ records of their construction and historical performance usually do not exist

poor degree of compaction = predisposing factor

LEVEE DESIGN

SOIL PROPERTIES

- Resistance to external and internal erosion
- Permeability
- Shear strength
- Density
- Resistance to liquefaction

Strength, compressibility & _____ f (degree of compaction; permeability degree of saturation)

Assessment of soil density & water content

Estimate of the required parameters for the design of resilient levees

LEVEES: DESIGN-CONSTRUCTION PROCEDURE

LABORATORY TESTS on samples of the proposed soil materials

Ŷd

W

Definition of the engineering properties required for design

FIELD COMPACTION CONTROL TESTS are specified

CONTROL TESTS

Results of these tests become the STANDARD FOR CONTROLLING THE PROJECT

To ensure that the construction actually adheres to the COMPACTION SPECIFICATIONS

LEVEES: FIELD DENSITY TESTS

✓ Sand cone method (AASHTO T 191; ASTM D 1556)

✓ Balloon method (AASHTO T 205; ASTM D 2167). Common destructive field density tests

✓ Nuclear methods

(AASHTO T 238 and T 239; ASTM D 2922 and D 3017)

✓ **TDR** (ASTM D 6780) Nondestructive tests

HYPOTHESES

• DRY SAND \rightarrow

$$q_c = C_0 \cdot \sigma_{v0}^{'C1} \cdot \sigma_{h0}^{'C2} \cdot e^{C_3 \cdot D_R}$$

(Baldi et al. 1986, Jamiolkowski et al. 1988, Garizio 1997, Jamiolkowski et al. 2000, 2001)

IN SITU STRESS STATE

(Jamiolkowski et al. 1988)

HYPOTHESES

2 PARTIALLY SATURATED SILT MIXTURES

EVALUATION OF THE STRESS STATE (in situ & laboratory)

Relative density is not the relevant index for the compacted state of soil including a large amount of fines content (Tatsuoka, 2011).

The degree of compaction defined for a certain compaction energy is more appropriate.

HYPOTHESES

Developed by the Geotechnical Laboratory of the University of Pisa in partnership with Pagani Geotechnical Equipment

Diameter = 320 mm; Height = 210 mm

Top boundary \rightarrow rigid Lateral and bottom boundaries \rightarrow flexible \rightarrow provided with latex membranes

The membranes allow the independent application of horizontal and vertical stresses through a compressed air system.

Manual air pressure regulators for the vertical and horizontal stresses.

All the possible chamber boundary conditions can be applied:

$$\checkmark$$
BC1 = σ_h = cost; σ_v = cost

$$\checkmark$$
 BC2 = ε_h = 0; ε_v = 0

$$\checkmark$$
 BC3 = ϵ_h = 0; σ_v = cost

$$\checkmark$$
 BC4 = σ_h = cost; ε_v = 0

Mini CPT:

- \checkmark 60° conical tip
- ✓ cone diameter = 8 mm
- \checkmark external sleeve
- \checkmark standard rate of 20 mm/s
- \checkmark load cell external to the cone

20

TESTED MATERIALS

TICINO SAND

Preliminary tests for validating the equipment (mini CC and mini-cone).

Dry sand samples are reconstituted inside the CC to a given D_R by dry pluviation.

Soil type		M (A	odified ASTM I	Procto D1557)	r	Atterberg Limits (ASTM D 4318)			Soil classification			
Abbreviation		on	γ_{dmax} [kg/m ³]	w _{opt} [%]	e _{opt}	(Sr) _{opt} [%]	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	AASHTO M 145 (1991)	Gs	d ₅₀ [mm]
	FR		2047	9.43	0.33	78	26÷31	18÷24	7÷10	A4÷A6	2.72	0.002÷0.025
	PC		1950	10.7	0.39	74	25	19	6	A4	2.71	0.085
	DD		1820	13.1	0.49	73	31.5	23.5	8	A4	2.71	0.01
	TC		1895	12	0.42	77	25	6	19	A6	2.69	0.02

TESTED MATERIALS

FINE-GRAINED SOILS

✓ Samples are reconstituted in 5 layers in a mold

 \checkmark The soil is prepared at a given W and compacted to a given γ_d using static compaction

✓ The compaction effort, required to consolidate each layer and the sample, is recorded: $E = (1/2 \cdot \sum_{i=1}^{5} F_i \cdot \delta_i) / \sum_{i=1}^{5} V_i$

EX	PE	R]	IM	EN	T	A		PR	00	GR	AM
Soil type	Boundar	y stresses	U	Jnit weigh	it	Water	content	Б			ETNIE CDATNIED
Abbreviation	σ _w [kPa]	σ _h [kPa]	γd [kN/m ³	$\gamma_{\rm dmax}$ [kN/m ³]	Vd/γdmax	w [%]	Wopt	E [MJ/m ³]	σ _{pmax} [kPa]	Qc IMPal	FINE-GRAINED
DD	30	30	14.50	17.60	0.82	13.2		0.395	8224	2.807	SOILS
DD	50	50	14.56	17.85	0.82	13.2	1	0.238	6157	1.786	
DD	80	80	14.56	17.85	0.82	13.2	1	0.299	6752	1.512	A STATE
DD	30	30	16.38	17.85	0.92	13.2	13.1	1.324	24474	4.751	
DD	50	50	16.38	17.85	0.92	13.2	1	1.413	24523	4.063	A States
DD	80	80	16.38	17.85	0.92	13.2		1.501	24523	4.990	
PC	30	30	15.60	19.13	0.82	10.8	10.7	0.62	13731	3.274	
PC	50	50	15.60	19.13	0.82	10.8	10.7	0.697	14712	3.648	
PC	80	80	15.60	19.13	0.82	10.8		0.545	13731	3.850	maret 10000 y
PC	30	30	17.55	19.13	0.92	10.8		2.407	39627	7.191	plant
PC	50	50	17.55	19.13	0.92	10.8		2.76	40707	7.877	a aftur on ce
PC	80	80	17.55	19.13	0.92	10.8		2.211	36979	7.603	Sance
FR	30	30	18.50	2.05	0.92	12.0		4.123	46864	6.533	
FR	30	30	18.50	2.05	0.92	12.0		3.315	43136	6.535	
FR	30	30	18.50	2.05	0.92	12.0		2.938	37465	6.767	DD: PC:
FR	30	30	18.00	2.05	0.90	12.0		1.735	22730	3.254	w = 80.92%w
FR	30	30	18.00	2.05	0.90	12.0		1.735	24005	3.568	$\gamma_d = 00 \div 270 \gamma_{dmax}$
FR	30	30	18.00	2.05	0.90	12.0		1.828	24400	4.056	(Modified Proctor)
FR	30	30	16.00	2.05	0.80	12.0		0.511	8608	1.843	$\mathbf{w} = \mathbf{w}_{opt}$
FR	30	30	16.00	2.05	0.80	12.0	9.43	0.463	8313	1.736	
FR	30	30	16.00	2.05	0.80	12.0		0.475	7823	2.022	FR:
FR	30	30	16.00	2.05	0.80	4.0		0.26	10103	2.036	$v_{\rm e} = 80\% v_{\rm e}$
FR	30	30	16.00	2.05	0.80	4.0		0.307	9809	1.479	(Madified Practor)
FR	30	30	16.00	2.05	0.80	4.0		0.346	10790	1.827	
FR	30	30	16.00	2.05	0.80	8.0		0.579	15990	3.077	W= 4; 8; 12%
FR	30	30	16.00	2.05	0.80	8.0		0.622	15891	2.533	27
FR	30	30	16.00	2.05	0.80	8.0		0.564	15303	2.455	

TEST RESULTS

BARBARA COSANTI, PhD

 γ_{d} [kN/m³]

TEST RESULTS

$$\begin{array}{c} \hline \begin{array}{c} \hline \end{array} & A4; \ \gamma_{dmax} = 1950 \ kg/m^{3}; \ w_{opt} = 10.7\% \\ \hline \end{array} & A4; \ \gamma_{dmax} = 1820 \ kg/m^{3}; \ w_{opt} = 13.1\% \\ \hline \end{array} & \hline \begin{array}{c} \hline \end{array} & A6; \ \gamma_{dmax} = 1895 \ kg/m^{3}; \ w_{opt} = 12\% \end{array} \end{array}$$

31

WATER CONTENT EFFECT

6

7

$v_{opt} = 10.7\%$

		Time	W	Qc				
Test number	Date of the test	[Days]	[%]	[MPa]				
1	22/07/2014	0	10.78	7206				
2	07/08/2014	15	10.69	9278				
3	05/09/2014	45	10.17	11307				
4	19/09/2014	59	9.14	13680				
5	02/10/2014	72	11.44	7163				
Note: Soil sample: PC; $\gamma_d = 0.9 \gamma_{dmax}$								

BARBARA COSANTI, PhD

FINE-GRAINED

SOILS

$DD w_{opt} = 13.1$										
Test	Dete of the test	Time	W	Qc						
i est number	Date of the test	[Days]	[%]	[MPa]						
1	16/10/2014	0	12.9	2548						
2	27/10/2014	11	15.4	1685						
3	03/11/2014	18	17.6	1124						
4	10/11/2014	25	17.8	1120						
5	21/11/2014	36	13.3	5125						

Note: Soil sample: DD; $\gamma_d = 0.9 \gamma_{dmax}$

50

67

10.8

7.9

10216

15377

05/12/2014

22/12/2014

TIM $\gamma_{dmax} = 19$ $w_{opt} = 1$	3 60 kg/m ³ 2.1%	ECT	PE A4	FINE-G SO	RAINED ILS
	TR (n. 794)		w _{opt} =10	.5%	
Test	Time [Days]	Qc [kPa]		PE (n. 802)	
1	7	4253		Time	Qc
2	14	5738	lest	[Days]	[kPa]
3	21	5413	1	1	/211
4	28	6461	2	16	4211
5	39	6570	2	10	44J1 5402
6	57	6597	3	28	5492
			4	38	5784
			5	50	5908
			6	60	6044

TIME EFFECT

CA TC	A6 $\gamma_{dmax} =$ $w_{opt} = 12$	H 1895 %	kg/	5T ′m³	22000 20000 18000 16000 14000	CC • in situ				
CC †	ests:				G [°] 10000 8000					
Test number	Date of the test	Time [Days]	w [%]	Q¢ [MPa]	6000 4000					
1	22/12/2014	0	12	10.451	2000					
2	07/01/2015	16	14.5	5.329	0 6 8 10 12 14 16 18 20	22 24 26				
3	14/01/2015	23	17	3.553	w [%]					
4	20/01/2015	29	19	1.821						
5	03/02/2015	43	15	5.083	In situ					
6 13/02/2015 53 12 10.87					CPTUS					
7	02/03/2015	70	9.2	20.010						
8	24/03/2015	92	7.4	19.867						
No	te: Soil sample: T	C; γ _d = 0.9	γdmax	I						

As the water content decreases, E_d value increases

CONCLUSIONS

TICINO SAND

 \checkmark In the case of granular soils, the tip resistance mainly depends on the relative density and the horizontal effective stress with a minor effect of the vertical effective stress.

PARTIALLY SATURATED FINE GRAINED SOILS

✓ The tip resistance essentially depends on the compaction energy (or maximum compaction stress) and water content.

 \checkmark The tip resistance increases with water content reduction and elapsed time.

CONCLUSIONS

PARTIALLY SATURATED FINE GRAINED SOILS

✓ For a given soil and water content a correlation exists between tip resistance and soil dry density that can be used in practice to define a target tip resistance profile.

 \checkmark For the fill compacted at a specified water content, the compacted dry density can be inferred from the field measurements of qc, after the correction of the qc measured values for the actual water content.

 ✓ Correlations between tip resistance and dynamic modulus as inferred from LFWD could be used for expeditious controls during the levee construction.

Thank you

barbara.cosanti@gmail.com

https://it.linkedin.com/pub/barbara-cosanti/5a/a08/909