

WORKSHOP RECENTI SVILUPPI NELLE INDAGINI IN SITO Pisa, Scuola di Ingegneria – 14 giugno 2019

PROF. MICHELE JAMIOLKOWSKI

ZELAZNY MOST COPPER TAILINGS DISPOSAL

Plan of depository

ZELAZNY MOST TAILINGS DISPOSAL

Updated as of March 2018

Maximum dam height: _____ Tailings volume stored: _____ Storage rate: ______ Ring Dam's length: ______ Total Area: ______ Beach Area: ______ Pond Area: ______ Water volume: ______ Operation time: ______

71 m
618x10⁶ m³
17x10⁶ m³/annum
~15 km
~14 km²
~7 km²
~5 km²
~8x10⁶ m³
1977 throughout 2050

LECTURE OUTLINE

DAM HEIGHT AND CREST ELEVATION Updated at March 2018

Dams He	ight,	m
North:	49	
West:	58	
South:	41	
East:	71	

Crest Elevation:

180 to 182 m asl

(*) Used to build the ring dam

Mean grain size, mm

OVERALL GRADING OF TAILINGS

RING DAM - SCHEMATIC CROSS-SECTIONS

REASONS FOR PARTIAL SATURATION

CIRCUMFERENTIAL DRAIN SYSTEM

THE INTERNATIONAL BOARD OF EXPERTS (IBE)

THE TEAM

W.D. Carrier, IBE
M. Jamiolkowski, IBE
R. Chandler, IBE (retired in 2016)
J. Standing, IBE (took over R. Chandler)
K. Høeg (IBE)
W. Wolski (PGE)

IBE was appointed in 1992 by Polish Government and KGHM to oversee, via observational method, the safe operation and development of TSF Zelazny Most,

GEOLOGICAL AND GEOTECHNICAL SETTINGS

TSF Zelazny Most jeopardized by:

 Foundation hazard, due to extremely complex geological and geotechnical settings

Hazard of spontaneous flow failure (static liquefaction)

Threats strictly linked:

→ Foundation failure can trigger flow failure
 → Flow failure can trigger dam failure

GEOTECHNICAL PROFILE DOWNSTREAM OF THE EAST DAM

COPPER TAILINGS

Main Focus - Liquefaction Hazard

- Tailings characterization, role of in-hole geophysical tests.
- Mapping the partial saturation of tailings in situ.
- Effect of partial saturation on liquefaction resistance of sand-like soils.

INTEGRATION OF SEISMIC MEASUREMENTS IN GEOTECHNICAL DESIGN SELECTED TOPICS DEALING WITH IN-HOLE TESTS IN SAND-LIKE SOIL (After Prof. K. H. Stokoe

• Focusing on material properties and design parameters

Dealing mainly with sand-like soils

In-hole seismic tests considered*

SEISMIC BODY WAVES VELOCITY AID IN GEOTECHNICAL DESIGN

- $V_p \rightarrow$ Distinction between fully and partly saturated soils
- $V_s \rightarrow$ Appraisal of undisturbed samples quality
- $V_s + V_p \rightarrow Assessment of porosity in situ$
- $V_s \rightarrow$ Soil stiffness at small strain, $\gamma \leq 10^{-5}$ %

Type of in-hole generated seismic waves:

- Cross-Hole tests:
 - P-wave velocity $V_p(H)$, S-wave velocity, $V_s(HV)$ & $V_s(HH)$
- S-CPTU & S-DMT:

P-wave velocity $V_p(V)$; S-wave velocity, $V_s(VH)$

CROSS-HOLE STATIONS GENERATING THE SEISMIC BODY WAVES

SATURATION DEDUCED FROM PROPAGATION OF P-WAVES

MAPPING LOCATION OF PHREATIC BY PROPAGATION OF P-WAVES

Zelazny Most Tailings Disposal DEPTH OF THE PHREATIC SURFACE

Dr. A. Callerio SGI, Milano

Geodetic	CH -Survey		Distance from		Beach	Depth of phreatic
Cross-Section	Year	CH-BH's	starter dam	Dam Crest	elevation	surface from beach
-	-	-	m	m a.s.l.	m a.s.l.	m
W-VIII	2016	7W-8W	380	185 (2015)	178.0	24
W-VIII	2016	4W-5W	295	185 (2015)	179.0	30
W-VIII	2016	1W-2W	210	185 (2015)	183.0	42
W-XIa	2017	3W-4W	380	180 (2017)	152.1	28
W-XIa	2017	1W-2W	300	180 (2017)	148.7	32
W-XIa	2017	5W-6W	200	180 (2017)	143.9	37
N-XVIa	2017	1N-2N	340	185 (2017)	138.0	42
N-XVIa	2017	3N-4N	265	185 (2017)	137.9	46
N-XVIa	2017	5N-6N	190	<u>185 (2017)</u>	130.5	> 44
N-Va	2016	7N-8N	345	185 (2017)	180.0	33
N-Va	2016	4N-5N	265	185 (2017)	182.0	39
N-Va	2016	1N-2N	185	<u>185 (2017)</u>	171.0	32
E-XVIII	2017	3E-4E	450	185 (2017)	159.6	21
E-XVIII	2017	1E-2E	365	185 (2017)	151.7	29
E-XVIII	2017	5E-6E	150	185 (2017)	134.1	37
E-XIX	2016	4E-5E	465	185 (2015)	170.0	15
E-XIX	2016	1E-2E	365	185 (2015)	179.0	31
E-XIX	2016	7E-8E	145	185 (2015)	164.0	37

LOCATION OF PHREATIC SURFACE IN TAILINGS

- Propagation of the longitudinal seismic body P-waves velocity V_p from 18 CH to map location of phreatic surface below the beach at different distance from the dam confining tailings.
- Measured values of V_p, the most reliable tool to distinguish fully saturated from near to saturated tailings.
- Continued validity of current drainage conditions assured by installation of circumferential drains at ~ 6m vertical spacing and repeated CH testing.
- V_p ≥ 1550 m/s, velocity of P-wave in water, threshold of full saturation.

NORMALIZED CRR IN NEARLY SATURATED SAND vs. COMPRESSION WAVE VELOCITY

UNDISTURBED SAMPLING OF TAILINGS

GEL-PUSH SAMPLER

- Procedure developed jointly by Japan and Taiwan under prof. K. Ishihara guidance
- To date used in Japan, Taiwan, Poland, Bangladesh, New Zealand, Italy
- Gel reduces friction between soil and internal liner during sampling, forming thin gel layer around the sample
- Polymer soluble gel removable after

sample extrusion

UNDISTURBED TAILINGS CORE RETRIEVED USING G-P TR SAMPLER

dam crest: 340m

CRITERIA TO EVALUATE SAMPLE DISTURBANCE

• $p_s/p'_0 \rightarrow$ Skempton (1961), Chandler et al (2011);

 p_s = suction measured immediately after retrieval of the undisturbed sample

p'₀= the **best estimate** of in situ mean effective stress

• $\Delta e/e_0 \rightarrow$ Lunne et al (1997,2006), De Groot et al (2011);

 Δe = reduction of void ratio after 1-D recompression of laboratory sample consolidated to the **best estimate** of in situ effective stresses

 $e_0 = in situ void ratio$

• $V_{s1}(L)/V_{s1}(F) \rightarrow$ Sasitharan et al (1994), Landon et al (2007);

 $V_{s1}(L) =$ normalized S-wave velocity measured on the laboratory sample consolidated to the **best estimate** of in situ effective stresses

 $V_{s1}(F)$ = normalized S-wave velocity measured in situ*

(*) CH, DH, S-CPTU, S-DMT

FIELD vs. LABORATORY S-WAVE VELOCITY AN INDEX OF SAMPLE QUALITY

- $V_s(F)$ reflects soil: state, fabric, aging, bonding,.....
- V_s (L), determined on specimen reconsolidated to the in-situ geostatic stresses
- Higher V_s (L)/ V_s (F), better quality of the tested specimen
- Main uncertainty, selection of laboratory horizontal consolidation stress (σ'_{ho}). Empirical, applicable to all kind of soils. Qualitative criteria need to be established

STRESS EXPONENT vs UNIFORMITY COEFFICIENT FOR GRANULAR SOILS

Stokoe et al (1996)

RETRIEVED GEL-PUSH SAMPLES

RETRIEVED SAMPLE

SPECIMENS FOR TX-CIU AND TX-CK₀U TESTS

Geoteko (2015)

UNDISTURBED CLAY SAMPLES QUALITY LABORATORY vs FIELD CRITERION

PORTO EMPEDOCLE HARD PLIOCENE CLAY MULTIPLE APPROACH to SAMPLE QUALITY ASSESSMENT

Depth	$\Delta \mathbf{e}$	V _{s1} (L)	p _k
(m)	eo	V _s (F)	P ['] 0
28.6	0.0093	0.79	0.983
31.3	0.0069	0.69	1.078
31.2	0.0059	0.74	1.082
49.8	0.0112	0.82	0.852
53.1	0.0032	0.81	0.938
56.1	0.0052	0.78	0.991

NORMALIZED LIQUEFACTION RESISTANCE OF PARTIALLY SATURATED SAND-LIKE SOILS

PARTIAL SATURATION vs LIQUEFACTION RESISTANCE

- In sand-like soils the liquefaction resistance increases as the values of S_r and B decrease.
- Both S_r and B cannot be monitored in field. The P-wave velocity V_p is that used to identify the in-situ soil state and the conditions of specimens in laboratory, Ishihara (2001).
- To assess liquefaction resistance of partly saturated soils, it is required to couple field and laboratory V_p-values, supported by dedicated laboratory tests carried on fully and partly saturated specimens.

NGI CRITERIA FOR SAMPLE QUALITY

Lunne et al (1998, 2006)

APPLICABLE IN FINE GRAINED SOILS

OCR	$\frac{\Delta e}{e_0}$ at p' *				
1→2	< 0.04	0.04→0.07	0.07→0.14	> 0.14	
2 →4	< 0.03	0.03→0.05	0.05→0.10	> 0.10	
4 →6	< 0.02	0.02 →0.035	0.035→0.07	> 0.07	
Quality	1	2	3	4	
Quality: 1 - Good to excellent 3 - Poor					

2 - Good to fair 4 - Very poor

(*) p'_0 = laboratory consolidation stress, close to that in situ

G-286

GEL-PUSH SAMPLES - PRECAUTIONS

BOREHOLE DRILLING PROCEDURE:

Bentonite or polymer mud+casing if necessary.

DELIVERY TO LABORATORY:

Samples should be transported in subvertical position, accelerometers suggested to monitor vibrations.

SAMPLES HANDLING:

Complex handling samples in laboratory:

- Upright core extrusion, gel-cover removal*
- Specimen preparation and saturation.

(*) not later than 10 to 15 days after sampling

GEL-PUSH SAMPLER Tr TYPE

UNDRAINED SHEAR STRENGTH and INDEX PROPERTIES of ZM TAILINGS

