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Summary: This paper explores using Cairo tiling (pentagonal) and hexagonal patterns for the design of gridshells. The structural performance of 

these grids is measured by calculating the failure load using the finite element method. It is found that pentagonal grids are comparable in capacity to 

quadrilaterals. Hexagonal grids have a smaller capacity but are as structurally efficient as the pentagonal grids. Both the pentagonal and hexagonal 
grids offer new aesthetical possibilities. 
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1. INTRODUCTION 

A gridshell is constructed of a grid or lattice of linear structural 

members. Timber gridshells usually have the members crossing above 

and below each other at the nodes while steel gridshells have individual 
members bolted or welded to the nodes. The openings of the grid are 

often covered with glass panels to allow for daylight, but can be clad 

with other materials such as wood or EPTFE. Gridshells are often used 
to enclose existing spaces, as was done for the British Museum Great 

Court in London and the Smithsonian American Art Museum and 

National Portrait Gallery in Washington DC, but they can also serve as 
stand-alone structures such as the Weald and Downland Museum [1]. 

The majority of built gridshells use quadrilateral or triangular grids. In 

this paper, we investigate the structural efficiency of gridshells with 
Cairo-tiled (pentagonal) and hexagonal grids. This study was inspired by 

our work with engineers Atelier One on the pentagonal gridshell design 

for the Inhotim sculpture park in Minas Gerais for the client Bernardo 
Paz, and the architect Pedro Doyle. 

We also drew inspiration from cellular structures seen in nature such as 

honeycombs or dragonfly wings. Nature is often a source of inspiration 
in architectural and structural design. Early examples of mimicking 

nature both aesthetically and technically include Rene Binet’s Porte 

Monumentale for the 1900 Paris Expo, La which was inspired by Earnst 
Haeckel’s detailed drawings of microscopic sea creatures, radiolaria [2]. 

Frei Otto also used this tradition of nature to inspire aesthetical and 

technical forms such as his spider web like tensile structure, the Munich 
Olympic Stadium. 

The lattice patterns seen in nature are more irregular and randomized, 

offering more structural redundancy. The goal of this paper is to provide 
the basis for future investigation of randomized grids by first assessing 

the structural capacity of the regular pentagonal and hexagonal 

gridshells.  

Shell structures are 3D structures that are thin in one dimension. They 

have the ability to span large areas with a minimum amount of material. 

Shells take loads effectively because of their form; they have additional 
stiffness due to their curvature.  The detailed analysis of a shell structure 

is difficult because it is highly sensitive to its curvature and any 

imperfections; given the same material and thickness, if the curvature is 
changed, the shell can have a different failure load and mode [3]. 

Gridshells are a subsection of shells because they also use curvature to 

increases their stiffness and take loading while maintaining relatively 
thin members. However, gridshells usually rely more upon bending than 

do continuous shells. 

In this paper, we study the structural capacity of a spherical cap 
gridshell. The dominant failure mode for a continuous spherical cap is 

global buckling. Timoshenko derived the analytical buckling load for a 
shell of thickness t, radius R, Young’s Modulus E, and Poisson’s ratio ν, 

presented in eq. 1. Timoshenko’s derivation assumes small 

displacements and a symmetric buckling mode about the diameter [4]. 
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As the shell becomes thinner, the buckling load decreases to the power 

two. As the radius increases the buckling load decreases quadratically. 

The closed-form solution of the buckling load of a continuous shell has 

been extrapolated to that of a gridshell through the use of the equivalent 

continuum [5]. The equivalent continuum is often defined by an 
equivalent thickness that describes the transition from the discrete 

gridshell to the continuous. The difficulty in defining the equivalent 
thickness is in understanding the interplay between the in-plane 

membrane response and the out-of-plane bending response because the 

bending and axial stiffness include shell thickness raised to a different 
power. As a result, the equivalent thickness can be defined in many 

ways [5,6,7].  

It should be emphasised that even if a shell takes loads primarily by 
membrane action, bending stiffness is still required to resist buckling 

and therefore a gridshell should never be made with pin-jointed nodes.  

The parameters that govern the structural behaviour of the gridshell are 

the grid spacing, the joint rigidity, the grid topology, the member 

section, the global curvature and boundary conditions [8]. In this study, 

we focus on the grid spacing, topology and curvature because they also 
affect the aesthetics of the gridshell and are often established in the 

schematic phase of design.  

2. METHODOLOGY 

We measure the structural efficiency of pentagonal and hexagonal grids 

by calculating their failure load using the finite element method to 

analyse both linear and non-linear buckling. We study how their failure 
load changes with varying grid spacing for spherical cap shells of 

different span-to-height ratios. Lastly, we look at how sensitive the 

pentagon and hexagon topologies are to imperfections and compare 
them to the triangular and the quadrilateral grid. 

2.1. Global and Local Geometry 

We conduct our study on the global geometry of a spherical cap because 
a spherical cap is a common geometry used in gridshells [9]. Also, it is 

the same geometry used in previous work that studies triangular and 

quadrilateral topologies; the same study to which we will compare our 

pentagonal and hexagonal results [7].  

 

The spherical cap is defined by its span L (30.5 m) and height h (1.5 m, 
2.8 m, 5 m) from which we can calculate the radius R and angle of 

openness α (Fig. 1). In this study, we consider three different span-to-

height ratios L/h= 20,11,6. The grid topologies are pentagons and 
hexagons and their member lengths are approximately equal when 

projected onto a plane (Fig. 2). The grid spacing s ranges approximately 

from 0.75 m to 3 m. Due to the circular boundary, the topology becomes 
irregular at the boundary. Lastly, the grid members are solid, square
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Fig. 1. Geometry, boundary and loading conditions of the spherical cap. 

 

cross-sections of 127 mm x 127 mm. Note that we are only interested in 
the ratios of quantities and for the square section the two principal 

second moments of area are equal to each other and the ratio of the St. 

Venant torsional constant to the polar second moment of area is 0.1406 
x 6 = 0.84 [10]. 

2.2. Boundary and Loading Conditions 

The spherical cap is simply supported around the base and is uniformly 
loaded with vertical point loads at the joints. Asymmetric loading will be 

considered in future work as the hexagonal grid is expected to be more 

sensitive to nonuniform loading. However, due to the large number of 
parameters already in this study, we chose to limit the load type 

variation. The joints are rigidly connected, thus allowing for the transfer 

of bending and torsional moments. 

 

Fig. 2. Illustration of pentagonal and hexagonal topologies and density. 

2.3. Material Properties 

We consider a steel gridshell with an elastic-plastic profile where 

Young’s Modulus E=200 GPa, strain hardening modulus Et=345 MPa, 

yield stress σy=345 MPa, Poisson’s ratio ν=0.3, and density ρ=7850 
kg/m3.  

2.4. Finite Element Model 

The finite element models consist of beam elements and are analyzed in 
the commercial finite element package ADINA. An example of the 

finite element model for the hexagonal grid with L/h=6 and spacing 

s=1.5 m is shown in Fig. 3. 

A linear buckling analysis is done first to assess the overall behavior of 

the structure, but also to provide the shape of the initial imperfection for 
the nonlinear analysis [11]. The nonlinear analysis assumes large 

displacements and rotations, but small strains and uses a Load-

Displacement-Constraint method where a load multiplier is used to 
increase and decrease the loading. The initial imperfection is the first 

buckling mode calculated in the linear buckling analysis scaled such that 

the maximum deviation from the sphere is 3 mm. All finite element 
modeling techniques are validated with benchmark problems and strain 

energy convergence tests [12].  

 

Fig. 3. Finite element model of the hexagonal spherical cap. 

3. RESULTS 

The linear and nonlinear analyses of the pentagon and hexagon grids are 
presented first. Next, the pentagon and hexagon grids are compared to a 

previous research done with triangle and quadrilateral grids [7].  

3.1. Linear Buckling Analysis 

The linear or eigenvalue buckling loads for the pentagon and hexagon 

topologies are plotted in Fig. 4. The ordinate is the log to the base 10 of 

the linear buckling load as a vertical load per unit area and the abscissa 
is the grid spacing. The lines represent the three different span-to-height 

L/h ratios. 

 
As can be seen in the figure, the failure loads drop significantly between 

the triangular and the quadrilateral topology. The pentagonal grid is 

similar in structural capacity to that of the quadrilateral grid. The 
hexagonal grid is significantly less than the pentagonal. For example, for 

L/h=6 and a spacing s=0.75 m, the pentagon’s capacity is almost twice 

that of the hexagon. 

3.2. Structural Efficiency 

There is a trade-off in the structural capacity of the shell and the volume 

of the members of the shell: the pentagon grid has more members than 
the hexagon. We measure this trade-off by normalizing the failure load 

to the weight of the structure, both measured as a force per unit area. 

This structural efficiency metric η is given by eq. 2 indicates how many 
times its own weight the structure can carry. 
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Note that we are here concerned with the relative efficiency of the 

different grid topologies. Other factors come into the efficiency; in 
particular one would expect solid sections to be less efficient than 

hollow members. 

Fig. 5 plots the structural efficiency metric η as the ordinate and the grid 
spacing as the abscissa. It can be seen that for the most shallow shell 

L/h=6 there is little difference in structural efficiency between the 

pentagon and the hexagon grids. However, as the shell become steeper, 
and the grid denser, the pentagon is structurally more efficient. 

Fig. 5 also plots the structural efficiency for the triangular and 

quadrilateral topologies from previous work. All four topologies exhibit 

the same trend: as the grid becomes denser the structural efficiency 

increases significantly and on average doubles its efficiency. Note that 

the member cross-sectional size remains constant for all the densities, 
but if smaller members were used for the higher density, this would 

reduce the structural efficiency. 

For the more shallow shell (L/h=20) there is an insignificant advantage 
in terms of efficiency between using any of the topologies; any of the 

four topologies can offer the same efficiency. 
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Fig. 4. The log base 10 linear buckling load for the four topologies (triangular, quadrilateral, pentagonal, hexagonal). 

 

Fig. 5. The structural efficiency of the four topologies (triangular, quadrilateral, pentagonal, hexagonal).

3.3. Nonlinear Analysis 

The nonlinear analysis accounts for prebuckling deflections and 
rotations and nonlinear material behavior. It also tells us whether the 

faster linear buckling analysis is valid and if the shell is sensitive to 

initial imperfections.  

A nonlinear analysis was performed for each of the three span-to-height 

ratios, and for a grid spacing of s=1.5 m for both the pentagon and 

hexagon. The nonlinear analysis for the triangle and quadrilateral were 
also done as they were not done in the previous work [7]. An example of 

the load-displacement curve from the nonlinear analysis of the pentagon 

grid of L/h=6, s=1.5 m is shown in Fig. 6. As shown in the plot, the 
relatively large displacement prior to failure would imply that the 

pentagonal grid has a small sensitivity to imperfections. The decrease in 

the collapse load is due to imperfections and deflections prior to 
collapse. This was confirmed by repeating the nonlinear analysis with an 

elastic material. The same load-displacement curves were obtained as 

that of the nonlinear material.  

In all cases the linear buckling analysis predicts a higher collapse load 

then the nonlinear analysis. Fig. 7 plots the percent decrease in the load 

prediction between the linear analysis and the nonlinear analysis. 

The triangular grid and the hexagonal grid are the most sensitive to 

imperfections. They both exhibit a maximum decrease of 50% from the 

linear buckling load to the nonlinear. For the triangular grid the 
sensitivity to imperfections increases as the shell becomes shallower. 

However, the opposite is observed for the hexagon grid; as the shell 

become steeper the hexagon becomes more sensitive to imperfections. 

The quadrilateral grid is the least sensitive to imperfections, and exhibits 

less than a 10% decrease in buckling load between the linear and the 

nonlinear analysis.It should be noted that while there is a significant 
decrease in the buckling load for the triangular grid, the triangle is still 

stronger and structurally more efficient than the quadrilateral, pentagon 

and hexagon. 

4. DISCUSSION 

There are non-structural advantages and disadvantages to using a 

pentagonal or hexagonal grid. Often the cost and difficulty in the design 
of the gridshell is the joint design. For a pentagonal grid, there is an 

irregularity in the number of members sharing a joint; there are either 

three or four members. However, for a hexagon there are uniformly 
three members sharing a joint. 

The panel shape also provides a challenge to the cladding design. A 

triangular grid can be faceted with flat panels regardless of the curvature 
because three points define the plane. Panels with more than three edges 

can only achieve a flat or possibly single curved cladding if the 

geometry is constrained in some way [13, 14, 15]. 

The nonlinear analysis provides insight into the behaviour of the 

gridshell and whether it is truly behaving as a shell. The greater the 

sensitivity to imperfection the more the gridshell is behaving like a 
conventional shell. In the case of all the grids except the triangular, in-

plane Vierendeel action is needed to provide some aspects of in-plane 

membrane stiffness. 

The spherical cap analysed in this paper is properly supported as a shell 

and the shell is uniformly loaded. The results would change if the 

loading were non-uniform or if the shell were less well supported 

5. CONCLUSION 

This paper presents the first known analysis of Cairo-tiling (pentagonal) 

and hexagonal grids in the design of gridshells. Overall, pentagons 
perform within the same range as quadrilateral grids in terms of capacity 

and efficiency. Hexagonal grids do not provide as much structural 

capacity as the triangles, quadrilaterals, or pentagons, yet can be 
comparable in structurally efficiency. Future work will study the effect 
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of asymmetric loading on pentagonal and hexagonal grids as they are 

expected to require more torsional stiffness. 

 

Fig. 6. The linear and nonlinear analysis for the pentagonal grid. 

 

Fig. 7. The percent error between the nonlinear and linear analysis. 
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