A Framework of Intelligent Sensor Network with Video Camera for Structural Health Monitoring of Bridges

Arslan Basharat*, Necati Catbas** and Mubarak Shah*

*Computer Vision Lab and **Civil Structures Lab, University of Central Florida Orlando, FL

University of	USU
Central Floric	la

Outline

- Introduction
- Structural Health Monitoring (SHM)
- Framework Details
 - Network Layout
 - Vibration Sensing
 - Event Detection
- Test-bed overview and demonstration Video
- Conclusion

University of	USION
Central Flor	ida

Introduction

- Wireless sensor networks have been used in various areas
- Advances in Micro Electro-Mechanical Systems (MEMS) propose the use for civil structural health monitoring
- Higher data rate requirements
- Our framework for this task augmented with video cameras

University of	USION
Central Flor	ida

- Constantly monitor status of the structure
- Detect abnormal behavior
- Localize structural damage
- Various SHM Systems
 - Visual Inspection by Humans
 - □ Tomography (Ultrasound, X-rays etc.)
 - Vibration & Strain Monitoring

...

University of	USION
Central Flori	ida

Essential characteristics
 Large number of sensors
 Sensor types
 Vibration
 Tilt

Strain

Data acquisition system for data recording
 Centralized data interpretation

University of	USION
Central Flor	ida

Drawback of conventional wired system
 Expensive
 Huge mesh of cables
 Centralized processing only
 Larger response time
 Less Fault-Tolerant

Advantages of using a wireless system

- Inexpensive
- Wireless data communication
- Distributed processing possible
 - Improved response time
 - Near real-time performance
- More fault-tolerant system
 - Redundancy
 - Modularity
- Scalability

SHM of Bridges

- Need of visual surveillance
 Traffic monitoring
 Activity detection
- Autonomous correlation between
 Video
 - Other sensor data (e.g. vibration, strain)
- Intelligent sensing and actuation

University of	VISION
Central Flor	ida

SHM of Bridge

An example of wired SHM system

Drexel University / Commodore Barry Bridge

(c) Health monitor interface example for a long span bridge

University of

Central Florida

Proposed Framework

- Wireless sensor nodes
- Central station
 - Data collection
 - Video cameras controller

Sensor Network

- Mica motes
- MTS series sensor boards
- Sensors used
 - Accelerometer
 - Temperature
- Stationary video camera
 Pan/tilt/zoom feature
 - Controlled through central station

Network Architecture

- Clusters based network
- Cluster head
 - Gateway node
- Cluster member
 - 2-5 Sensing node
 - Backup nodes (Gateway, Sensing)
- Multi-hop to base station through cluster heads

University of

Central Florida

Node Layout on Bridge

Neighbor Discovery

- Central station to gateway node
- Gateway node to gateway node progressive list
- Gateway node to sensing node progressive list

Vibration Sensing

- Vibration data from Accelerometer
- 2-axis of vibration
- Induced vibration through impact hammer
- Response from lab model of steel bridge
- Sensor with Mica2 mote

University of

Central Florida

Vibration Sensing

- Sampling frequency requirements
 100Hz-200Hz
 - □ Higher data rate
 - □ Smaller network battery life
 - □e.g. 6 nodes @ 150Hz x 2 axis
 - ~ 216 KB/min
- Solution: Adaptive Sampling

University of	VISION
Central Flor	ida

Adaptive Sampling

- Exploit silent zones
- Transmit only useful data
- Modes of Sensing Nodes
 - Sleep mode
 - Passive sensing
 - Low sampling frequency ~80Hz
 - Only two sampling nodes/cluster
 - Active sensing
 - Higher sampling frequency ~ 150Hz
 - Limited time period (45 secs)
 - Stored in Flash memory
 - Transferred through cluster head in allocated time slice

University of	USION
Central Flor	ida

Adaptive Sampling

- 1 passive/rest sleep
 High vibration event
- detected
- All active
- Active for limited time
- Round-robin passive sensing
- How to detect

University of

Central Florida

Event Detection

- Vibration Events
- Activity metric on 1-D vibration data
- A good solution
 - Thresholded Mean Shift Vector

Mean Shift Vector

- Always points towards the direction of maximum increase in density
- Online model: Can be applied in an iterative fashion

$$M_h(\mathbf{y}) = \left[\frac{1}{n_x} \sum_{i=1}^{n_x} (\mathbf{x}_i - \mathbf{y}_0)\right]$$

where,

 n_x is the number of points y_o is the last mean value x_i is ith sample

Interesting Events

SENSE_EVENT

Suppression of unnecessary data

 \Box Lower mean shift threshold T_L

□ Change sensing mode (Passive/Active)

CAMERA_EVENT

Critical event notification for visual inspection

□ Higher mean shift threshold T_H

□ Trigger video camera request in cluster

University of	U
Central Florida	a

Event Detection

SENSE_EVENT

Mean shift threshold T_L exceeded

□ True positive

CAMERA_EVENT detected

Mean shift threshold
 T_H exceeded

□ True positive

University of

Camera Events

Central Florida

Camera Event

- Stationary wireless sensor nodes
- Controlled gateway node deployment
- Stationary pan/tilt/zoom video camera
- Central station attached to both video camera and WSN
- Registered gateway nodes with approximate 1-D distance

Node Registration

- Utilizing the gateway node-gateway node progressive list
- Registering approx. gateway node positions
 EOV wide enough to
- FOV wide enough to cover the cluster

University of

Central Florida

Optimizations

- Single time-stamp and current sampling frequency transmitted for the whole data packet
- Mean-shift vector test after 45secs of active sampling
- Data packing for transmission saves ~38% of unused buffer

University of	UISION
Central Flor	ida

Test-bed Setup

University of Central Florida

Test-bed Setup

Demo Video

- Overview of the testbed
- Vibration induced by impact hammer
- Event detection by sensing nodes
- Camera motion

Conclusion

- Wireless sensor network have a promising application in the area of SHM
- Distributed processing enhances the system effectiveness
- Domain specific knowledge for data compression
- Tested in controlled lab environment, effectiveness of the system remains to be seen in real-life situation

University of	USION
Central Flori	ida