University of Pisa Department of Civil and Industrial Engineering

SEMINAR

ASSESSMENT OF EXISTING STRUCTURES

MONITORING AND NDT

Prof. Maria Luisa Beconcini

Pisa, 15 marzo 2013

STRUCTURAL MONITORING

- monitoring of the progress of pathological phenomena (degradation, instability) \Rightarrow long-term monitoring
- to know the behavior of a structure under the service loads, environmental actions (vibrations, etc.), or cyclic phenomena (temperature variations, etc.) ⇒ short-term monitoring

LONG TERM MONITORING

To distinguish the evolution of instability by cyclical phenomena, it is necessary that monitoring is carried out for quite long time, at least one year

Monitoring of cracks

consists in detecting, not the amplitude value of the cracks, but the amplitude change over time: opening or closing

- mechanical instruments
 - cheaper
 - practical to use
- electronic instrumentation
 - continuous monitoring
 - remote control
 - data storage

Mechanical instruments

crackmeters

- low cost
- low precision

removable deformometer

allows to measure relative movements between two reference pins

- accurate
- not invasive, allows monitoring for long periods of time

layout for monitoring corner cracks

Electronic instruments

instrumentation:

- transducers
 - displacement transducers
 - inclinometers
 - special transducers
 - temperature transducers
 - etc
- data acquisition system

Displacement transducer

it measures the relative displacement between the point where the frame is fixed and the point where the core is fixed

if the frame and the core are fixed on both sides of a crack, it acts like a crackmeter

examples of application

Inclinometer

it measures the increase of the lead out of a structure, eg. a wall

Results of the structural monitoring

usually we analyze the results after a quite long period, in order to detect cyclic phenomena: effect of temperature, etc.

the phenomenon is STABLE

measures may be less frequent

the phenomenon is INCREASING

repair or continue the monitoring

the phenomenon is probably STABILIZING

continue the monitoring

Short-term monitoring

monitoring the response of the structure to imposed loads:

- environmental actions
- loads specially applied
 - static load test
 - dynamic test

STATIC LOAD TESTS

Usually, it consists in applying loads on a floor and monitoring the inflection

It's important, previously, to make an accurate survey of the structure and a theoretical computation of the results of the test

The result of a load test is not the RESISTANCE of the structure, but only its STIFFNESS

If experimental results in terms of stiffness match with theoretical ones, then we can deduce that also actual resistance will be similar to the computed one It's important to consider the collaboration of non structural elements

In addition to the measurement of the inflection of the floor, it's necessary to measure the lowering of the supporting elements – beams, walls, etc.

Loads

Inflection transducers

CONDUCTING A LOAD TEST

- measure of inflections at "0" step
- application of load, step by step
- measure of inflections at each step
- measure at maximum load
- the maximum load is left on the structure for at least 15 min
- unloading (possibly step by step)
- measure when unloading is completed
- if the test results are not clear or unexpected, the test will be repeated

Test result

Test result is positive when:

- the structure is not damaged
- the results are similar to the expected ones
- inflections are proportional to the loads
- residual inflection is little (about 10%) with respect to maximum

example

ora	10.05	10.20		10.37		11.04		11.22		11.50		12.10		12.32		12.45	
T (°C)	25.8	25.6		25.9		25.9		26.0		26.3		26.2		26.6		26.7	
Fase di carico	Atezza del battente in acqua [cm]																
	0	5.0		12.0		12.0		18.0		32.0		32.0		5.0		0.0	
Comparatore N°	[mm/100]																
	lettura	lettura	η	lettura	η	lettura	η	lettura	η	lettura	η	lettura	η	lettura	η	lettura	η
1	635	637	2	639	4	639	4	641	6	646	11	646	11	640	5	639	4
2	858	864	6	871	13	871	13	877	19	890	32	891	33	870	12	866	8
3	782	788	6	798	16	798	16	807	25	824	42	826	44	796	14	790	8
4	804	807	3	814	10	814	10	821	17	834	30	835	31	813	9	808	4
5	949	949	0	952	3	952	3	953	4	956	7	956	7	951	2	949	0
6	813	819	6	824	11	825	12	830	17	840	27	840	27	823	10	819	6
7	679	686	7	696	17	696	17	706	27	725	46	725	46	696	17	689	10
8	674	677	3	687	13	687	13	691	17	715	41	716	42	689	15	686	12
9	674	680	6	687	13	687	13	693	19	704	30	704	30	687	13	683	9

Diagramma carico-inflessione

DYNAMIC TESTS

Results of a dynamic test

NON DESTRUCTIVE TESTS

EXISTING MASONRY BUILDINGS

- Detecting the typology and the arrangement of the blocks
- Mechanical characterization of the masonry
- Cracks pattern

Typology and layout

Layout of the blocks in the masonry wall

Quantity of mortar

Presence of cavities

THERMOGRAPHIC INVESTIGATIONS

ENDOSCOPY

CORE DRILLING

FLAT JACKS TEST

SEZIONE MARTINETTO PIATTO

EQUIPMENT FOR FLAT JACKS TESTS

SINGLE FLAT JACK Evaluation of the stress level

I= 200-250 mm base deformometrica

Corpo murario Useful for detecting different values of stress from a side to the other of a masonry wall, due to:

rotation, out of plumb

uneven distribution of the loads

FLAT JACKS TEST

mechanical characteristics in compression

SONIC TESTS

They consist in measuring the velocity of sonic waves through the masonry wall

V < 1000 m/s bad quality masonry, presence of cracks or/and voids 1000 m/s < V < 2000 m/s typical of existing masonry wall V > 2000 m/s good quality masonry

IN SITU DIAGONAL COMPRESSION TEST

used for detecting the shear behaviour of masonry walls

invasive test

IN SITU COMPRESSIVE AND SHEAR TEST

used for detecting the shear behaviour of masonry walls under different levels of compression

NDT FOR R.C. STRUCTURES

Detection of reinforcing bars:

covermeter

Tests for qualification of the concrete:

- semi-destructive tests: compression test on cores
- non destructive tests:

rebound hammer, ultrasonic test, combined tests

Compression test on cores

Rebound hammer

EN 13791

Ultrasonic test

EN 13791:2007

SONREB method

rebound index + ultrasonic velocity \Rightarrow concrete resistance

$$f_c = 7.695 * 10^{-11} * R^{1.4} * v^{2.6}$$

Example

f [N/mm²] ◆ carote R **▲** v R+v 30 -

decayed surfacecarbonated concrete