

Lifelong Learning Programme

81 E B Národní agentura pro evropské vzdělávací programy

Reliability Aspects

Milan HolickýCTU in Prague

Leonardo da VinciAssessment of existing structuresProject number: CZ/08/LLP-LdV/TOI/134005

Uncertainties are always present

•Uncertainties (aleatoric and epistemic) Decription

 theory of probability and statistics, fuzzy logic reliability theory and risk engineeringSome uncertainties are difficult to quantify

2

Eurocode EN 1990:

Reliability

 ability of a structure to fulfil all required functions during a specified period of time under given conditions

Failure probability P_f

 most important measure of structural reliability

Limit State Approach

- **Limit states - states beyond which the structure no longer fulfils the relevant design criteria**
- **Ultimate limit states**
	- –**loss of equilibrium of a structure as a rigid body**
	- –**rupture, collapse, failure**
	- –**fatigue failure**
- **Serviceability limit states**
	- –**functional ability of a structure or its part**
	- –**users comfort**
	- **appearance**

Reliability Methods

Reliability measures: failure probability p_{f} and reliability index $\bm{\beta}$

Fundamental case *E* < *R*

 $\rm Load\,E{=}e_0$ α_0 known, resistance *R* random: μ_R , σ_R , (α_R) Transformation of *R* to standardized variable $U=(R - \mu_R)/\sigma_R$ Limit state function: $g(X) = G = R - E = 0$ For $R=e^{\vphantom{\dagger}}_0$ μ_0 the standardized variable u_0 = $(e^{}_0 - \mu^{}_R)/\sigma^{}_R$

Reliability index for normal dist.: $\beta \! = \! -\! u_0^{} = \! (\mu_{\cal R}^{} - e_0^{}) / \sigma_{\cal R}^{}$ $=-u_{0}=% {\textstyle\int\limits_{0}^{t}} dt_{1}dt_{2}$ $(\mu_{\overline{R}}\!-\!e_{0})/\sigma_{\overline{R}}$

Failure probability

$$
p_{\rm f} = \Phi_R(e_0)
$$

For normal distribution

$$
p_f = \Phi(-\beta)
$$

An example of the fundamental case

E

R

$$
Z=R-E
$$

$$
\mu_Z = \mu_R - \mu_E = 100 - 50 = 50
$$

\n
$$
\sigma_Z^2 = \sigma_R^2 + \sigma_E^2 = 14^2
$$

\n
$$
\beta = \mu_Z / \sigma_Z = 3.54
$$

\n
$$
P_f = P(Z < 0) = \Phi_Z(0) = 0.0002
$$

 $β = μ_Z/σ_Z = 3.54$ $P_f = P(Z < 0) = Φ_Z(0) = 0.0002$, Relaibility margin and index β

 \mathbf{B} β Is the distance of the mean of reliability margin from the origin

Techniques:

Numerical integration (NI)

Monte Carlo (MC)

First order Second moment method (FOSM)

E

R

Third moment method (accounting forskewness)

First Order Reliability Methods (FORM)

Probabilistic models

E

R

Probability density $\varphi_E(x)$, $\varphi_R(x)$

R an d om variable *X*

Eurocode concepts of partial factors

Partial factor

• Design value

for normal and lognormal distribution $x_{\rm d} = \mu(1 - \alpha \beta V)$ for lognormal distribution: x_d $= \mu \exp(-\alpha \beta \sigma - 0.5 \sigma^2)$

• Characteristic value

for normal
$$
x_k = \mu(1 - kV)
$$

for lognormal $x_k = \mu \exp(-k \sigma - 0.5 \sigma^2)$

• Partial factor $\gamma_m = \frac{x_k}{x}$

Partial factor approach

R an d om variable *X*

Indicative target reliabilities in ISO 13822

Formal Updating formulas

 $f_Q^{\prime\prime}(q/\hat{x}) = C f_Q^{\prime}(q) L(|\hat{x}|q)$

$$
f_X^U(x) = \int_{-\infty}^{\infty} f_X(x|q) f_Q^{\prime\prime}(q/\hat{x}) dq
$$

Ask the expert !

Concluding remarks on reliability aspects

- Uncertainties are always present
- \Box Probability Theory may be helpful
- Reliability targets depends on consequences of failure
- Reliability targets depend on costs of improving
- \Box Existing structures may have a lower target reliability
- \Box Reliability may be updated using inspection results
- \Box There is a relation partial factor reliability index

Fatigue steel structures

Example: Resistance with unknown mean m_R and known stand. Dev. s_R =17,5

Assume we have 3 observations with mean *^mm* = 350 Then m_R has $s_m = 17,5/\sqrt{3} = 10$. If the load is to 304 then:

> *m_Z=* 350-304=46
s_Z =√(17,5² +10²) = 20,2 $\beta = 2,27$ *P*f=0,0116

Now we have one extra observation equal to 350.

In that case the estimate of the mean *^mm* does not change. The standard deviation of the mean changes to $17,5/\sqrt{(4)} = 8,8$

> *^mZ*= 350-304=46, *s_Z* =√(17,5² +8,8²) = 19,6, $\beta = 2,35$ *P*f=0,0095

Reliabilty level Beta (one year periods) given a crack found at t=10 a

Existing Structures (NEN 8700)

Reliability index in case of assessment

Minimum β < βnew – 1.0

Human safety: $\beta > 3.6 - 0.8$ log T

Inspection en monitoring

Time[⇒]

Reliability index

Probability of Failure = $\Phi(\text{-}\beta)$ ≈ **¹⁰** β

Relation Partial factors and beta-level:

$$
\gamma = \exp\{\alpha \beta V - kV\} \approx 1 + \alpha \beta V
$$

$$
\alpha = 0.7-0.8
$$

\n
$$
\beta = 3.3 - 3.8 - 4.3 \text{ (life time, Annex B)}
$$

\n
$$
k = 1.64 \text{ (resistance)}
$$

\n
$$
k = 0.0 \text{ (loads)}
$$

\n
$$
V = coefficient of variation
$$

Extensions

- **load fluctuations**
- **systems**
- **degradation**
- **inspection**
- **risk analysis**
- **target reliabilities**

JCSS TARGET RELIABILITIES β**for a one year reference period**

Human life safety

- Include value for human life in *D*
- Still reasons for IR and SR
- Example: *p* < 10-4 / year

Example NEN 8700 (Netherlands)

Minimum values for the reliability index β *with a minimum reference period*

(a) $=$ in this case is the minimum limit for personal safety normative

Updating

1) Updating distributions (eg concrete strength)

2) Updating failure probability $P\{F | I\}$ **Example: I = {crack = 0.6 mm}**

see JCSS document on Existing Structures en ISO13822

$$
P(A \cap B) = P(A|B)P(B)
$$

$$
P(F \cap I) = P(F|I)P(I)
$$

$$
P(F|I) = \frac{P(F \cap I)}{P(I)}
$$

 \int Two types of information I:

equality type: h(**x**) = 0

inequality type: h(**x**) < 0; h(**x**) > 0

x = vector of basic variables

$$
P(F|I) = \frac{P(Z(t_2) < 0 \cap h(t_1) > 0)}{P(h(t_1) > 0)}
$$

Target Reliabilities in EN 1990, Annex B

Formal Updating formulas

 $f_Q^{\prime\prime}(q/\hat{x}) = C f_Q^{\prime}(q) L(|\hat{x}|q)$

 $f_X^U(x) = \int f_X(x|q) f_Q(y|q) dq$ ∞−∞ $f(x) = \int_{-\infty}^{x} f(x|q) f_{Q}^{''}(q / \hat{x})$

Cost optimisation / design versus assessment

 $\mathsf{P}_{\mathsf{F}} = 10^{-\beta}$