

Reliability Aspects

Milan Holický CTU in Prague

Leonardo da Vinci Assessment of existing structures Project number: CZ/08/LLP-LdV/TOI/134005

Uncertainties are always present

•Uncertainties (aleatoric and epistemic) Decription

- theory of probability and statistics, fuzzy logic
- reliability theory and risk engineering

Some uncertainties are difficult to quantify

Eurocode EN 1990:

Reliability

- ability of a structure to fulfil all required functions during a specified period of time under given conditions

Failure probability $P_{\rm f}$

- most important measure of structural reliability

Limit State Approach

• Limit states - states beyond which the structure no longer fulfils the relevant design criteria

• Ultimate limit states

loss of equilibrium of a structure as a rigid body

- rupture, collapse, failure
- fatigue failure
- Serviceability limit states
 - functional ability of a structure or its part
 - users comfort
 - appearance

Reliability Methods

Reliability measures: failure probability $p_{\rm f}$ and reliability index β

							10 ⁻⁷
β	1,3	2,3	3,1	3,7	4,2	4,7	5,2

Fundamental case for normal distribution

$$E \leq R$$

$$G = R - E$$

$$G = R - E$$
 $\mu_G = \mu_R - \mu_E, \sigma_G^2 = \sigma_R^2 + \sigma_E^2$

Transformation of G to standardized variable $U=(G-\mu_G)/\sigma_G$

For G = 0 the standardized variable $u_0 = (0 - \mu_G)/\sigma_G$

Reliability index:

$$\beta = -u_0 = \frac{\mu_G}{\sigma_G} = \frac{\mu_R - \mu_E}{(\sigma_R^2 + \sigma_E^2)^{1/2}}$$

Failure probability

$$p_{\rm f} = \Phi(-\beta)$$

Fundamental case E < R

Limit state function: g(X) = G = R - E = 0

Load $E=e_0$ known, resistance R random: μ_R , σ_R , (α_R)

Transformation of R to standardized variable $U=(R-\mu_R)/\sigma_R$

For $R = e_0$ the standardized variable $u_0 = (e_0 - \mu_R)/\sigma_R$

Reliability index for normal dist.: $\beta = -u_0 = (\mu_R - e_0) / \sigma_R$

Failure probability

$$p_{\rm f} = \Phi_R(e_0)$$

For normal distribution

$$p_{\rm f} = \Phi(-\beta)$$

An example of the fundamental case

$$Z = R - E$$

$$\mu_Z = \mu_R - \mu_E = 100 - 50 = 50$$

$$\sigma_Z^2 = \sigma_R^2 + \sigma_E^2 = 14^2$$

$$\beta = \mu_Z / \sigma_Z = 3.54$$

$$P_f = P(Z < 0) = \Phi_Z(0) = 0.0002$$

Relaibility margin and index β

$$\beta = \mu_Z / \sigma_Z = 3.54$$
 $P_f = P(Z < 0) = \Phi_Z(0) = 0.0002,$

 β Is the distance of the mean of reliability margin from the origin

Probabilistic approach

$$Z = R - E$$

$$P_f = P(Z < 0) = \iint_{Z(X) < 0} \varphi_R(r) \varphi_E(e) dr de$$

Techniques:

Numerical integration (NI)

Monte Carlo (MC)

First order Second moment method (FOSM)

Third moment method (accounting for skewness)

First Order Reliability Methods (FORM)

Probabilistic models

		distribution	mean	sd
R	resistance	Lognormal	100	10
E	load effect	Gumbel	50	5

Probability density $\varphi_E(x)$, $\varphi_R(x)$

Eurocode concepts of partial factors

Partial factor

Design value

for normal and lognormal distribution

$$x_{\rm d} = \mu(1 - \alpha\beta V)$$

for lognormal distribution: x_d

$$= \mu \exp(-\alpha\beta \,\sigma - 0.5 \,\sigma^2)$$

Characteristic value

for normal
$$x_k = \mu(1 - kV)$$

for lognormal
$$x_k = \mu \exp(-k \sigma - 0.5 \sigma^2)$$

• Partial factor
$$\gamma_{\rm m} = \frac{x_k}{x_d}$$

Partial factor approach

		distribution	mean	sd
R	resistance	Lognormal	100	10
E	load effect	Gumbel	50	5

Random variable X

Indicative target reliabilities in ISO 13822

Limit states	Target reliability index, β	Reference period				
Serviceability						
Reversible	0,0	Intended remaining working life				
Irreversible	1,5	Intended remaining working life				
Fatigue						
inspectable	2,3	Intended remaining working life				
not inspectable	3,1	Intended remaining working life				
Ultimate						
very low consequences of failure	2,3	L _S years*				
low consequence of failure	3,1	L _S years*				
medium consequence of failure	3,8	L _S years*				
high consequence of failure	4,3	L _S years*				
* L _S is a minimum standard period for safety (e.g. 50 years)						

Updating distributions

P(x|I) = P(x) P(I | x) / P(I)

$$f_X(x|I) = C f_X(x) P(I|x)$$

prior likelihood

Formal Updating formulas

$$f_{Q}''(q/\hat{x}) = C f_{Q}'(q) L(|\hat{x}|q)$$

$$f_X^U(x) = \int_{-\infty}^{\infty} f_X(x|q) f_Q^{"}(q/\hat{x}) dq$$

Ask the expert!

Concluding remarks on reliability aspects

- Uncertainties are always present
- Probability Theory may be helpful
- ☐ Reliability targets depends on consequences of failure
- Reliability targets depend on costs of improving
- ☐ Existing structures may have a lower target reliability
- ☐ Reliability may be updated using inspection results
- ☐ There is a relation partial factor reliability index

Fatigue steel structures

no cracks found, but?

measured 1 mm, but?

Example: Resistance with unknown mean m_R and known stand. Dev. s_R =17,5

Assume we have 3 observations with mean $m_m = 350$ Then m_R has $s_m = 17,5/\sqrt{3} = 10$. If the load is to 304 then:

$$m_Z$$
= 350-304=46
 $s_Z = \sqrt{(17,5^2 + 10^2)} = 20,2$
 β =2,27
 P_f =0,0116

Now we have one extra observation equal to 350. In that case the estimate of the mean m_m does not change. The standard deviation of the mean changes to $17.5/\sqrt{4} = 8.8$

$$m_Z$$
= 350-304=46,
 $s_Z = \sqrt{(17,5^2 + 8,8^2)} = 19,6,$
 β =2,35
 P_f =0,0095

Reliabilty level Beta (one year periods) given a crack found at t=10 a

Existing Structures (NEN 8700)

Reliability index in case of assessment

Minimum

$$\beta < \beta_{\text{new}} - 1.0$$

Human safety:
$$\beta > 3.6 - 0.8 \log T$$

Inspection en monitoring

EXAMPLE

Resistance: $R = \pi d^2 f_v / 4$

Load effect: $E = V\rho$

Failure if E>R or: $V\rho > \pi d^2 f_y / 4$

Limit state: $V\rho = \pi d^2 f_y / 4$

Limit state function: $Z = R-E = \pi d^2 f_y / 4 - V\rho$

Reliability index

Probability of Failure = $\Phi(-\beta) \approx 10^{-\beta}$

β		2.3				
$P(F)=\Phi(-\beta)$	10-1	10-2	10 ⁻³	10-4	10 ⁻⁵	10 ⁻⁶

Relation Partial factors and beta-level:

$$\gamma = \exp{\{\alpha \beta V - kV\}} \approx 1 + \alpha \beta V$$

$$\alpha = 0.7-0.8$$

 $\beta = 3.3 - 3.8 - 4.3$ (life time, Annex B)

k = 1.64 (resistance)

k = 0.0 (loads)

V = coefficient of variation

Extensions

- load fluctuations
- systems
- degradation
- inspection
- risk analysis
- target reliabilities

JCSS TARGET RELIABILITIES β for a one year reference period

	Consequences of failure ⇒				
Cost to increase safety	Minor	Moderate	Large		
Large	β=3.1 (p _F ≈10 ⁻³)	β =3.3 (p _F \approx 5 10 ⁻⁴)	β =3.7 (p _F \approx 10 ⁻⁴)		
Normal	β=3.7 (p _F ≈10 ⁻⁴)	β =4.2 (p _F \approx 10 ⁻⁵)	β =4.4 (p _F \approx 5 10 ⁻⁶)		
Small	β=4.2 (p _F ≈10 ⁻⁵)	β =4.4 (p _F \approx 5 10 ⁻⁵)	β =4.7 (p _F \approx 10 ⁻⁶)		

Human life safety

- Include value for human life in D
- Still reasons for IR and SR
- Example: $p < 10^{-4}$ / year

Example NEN 8700 (Netherlands)

Minimum values for the reliability index eta with a minimum reference period

Consequence	Minimum	β-NEW		β -EXISTING	
class	reference period	,		-	
	for existing building				
		wn wd		wn	wd
0	1 year	3.3 2,3		1.8	0.8
1	15 years	3.3 2,3		1.8 ^a	1.1 ^a
2	15 years		2.8	2.5 ^a	2.5 ^a
3	15 years	4.3 3.3		3.3°	3.3 ^a

Class 0: As class 1, but no human safety involved

wn = wind not dominant

wd = wind dominant

(a) = in this case is the minimum limit for personal safety normative

Updating

1) Updating distributions (eg concrete strength)

2) Updating failure probability P{F | I }
Example: I = {crack = 0.6 mm}

$$P(A \cap B) = P(A|B)P(B)$$

$$P(F \cap I) = P(F|I)P(I)$$

$$P(F \mid I) = \frac{P(F \cap I)}{P(I)}$$

Two types of information I:

equality type: h(x) = 0

inequality type: h(x) < 0; h(x) > 0

x = vector of basic variables

$$P(F|I) = \frac{P(Z(t_2) < 0 \cap h(t_1) > 0)}{P(h(t_1) > 0)}$$

Target Reliabilities in EN 1990, Annex B

Reliability classes	· 1		y index β $\beta_{\rm d} \text{ for}$ $T_{\rm d}=50 \text{ yr}$	Examples of buildings and civil engineering works	
RC3 – high	High	5,2	4,3	Important bridges, public buildings	
RC2 – normal	Medium	4,7	3,8	Residential and office buildings	
RC1 – low Low		4,2	3,3	Agricultural buildings, greenhouses	

Formal Updating formulas

$$f_{Q}''(q/\hat{x}) = C f_{Q}'(q) L(|\hat{x}|q)$$

$$f_X^U(x) = \int_{-\infty}^{\infty} f_X(x|q) f_Q^{"}(q/\hat{x}) dq$$

Cost optimisation / design versus assessment

 $P_F = 10^{-\beta}$