

LEONARDO DA VINCI PROJECT CZ/11/LLP-LdV/TOI/134005 SEMINAR ON ASSESSMENT OF EXISTING STRUCTURES Pisa. 15-03-2013

# ON THE ASSESSMENT OF DETERIORATING STRUCTURES

Peter Tanner. Carlos Lara. Miguel Prieto. Ramon Hingorani







# MOTIVATION

- The need to assess the reliability of an existing structure may arise from different causes
  - All can be traced back to doubts about the structural safety



- Reliability ok for future use ?
- Staged evaluation procedure, improving accuracy of data

## **ASSESSMENT WITH PARTIAL FACTOR METHOD**

- Probabilistic methods are most accurate to take into account updated information
- But they are not fit for use in daily practice
- Partial factor method should be available for assessment

$$\gamma_{\text{E,act}} \cdot \mathbf{E}_{\text{k,act}} \leq \frac{\mathbf{R}_{\text{k,act}}}{\gamma_{\text{R,act}}}$$



#### Influence of updated information

# **ASSESSMENT WITH PARTIAL FACTOR METHOD**

Updated characteristic value of X





Updated partial factor γ<sub>X,act</sub>
 Can not be derived directly

 $\rightarrow$ 



Link between probabilistic and partial factor methods: design point, the most probable failure point on LS surface

# DEVELOPMENT OF PRACTICAL TOOLS FOR THE ASSESSMENT

- Identification of representative failure modes and LSF
- Adoption of partial factor format for assessment
- Definition of reference period
- Deduction of default probabilistic models
- Establishment of required reliability
- Updating of characteristic values and partial factors







#### **ON THE ASSESSMENT OF DETERIORATING STRUCTURES**

- Introduction
- Updated models for the assessment of sound structures
- Corrosion-damaged reinforced concrete structures
- La Laguna cathedral
- Final remarks







# PARTIAL FACTOR FORMAT FOR ASSESSMENT

Design value for action effects

$$\mathbf{E}_{d,act} = \gamma_{Sd,act} \cdot \mathbf{E} \left\{ \sum_{j \ge 1} \gamma_{g,j,act} \cdot \mathbf{G}_{k,j,act} "+" \gamma_{q,1,act} \cdot \mathbf{Q}_{k,1,act} "+" \dots \right\}$$

- $\gamma_{f,i,act}$  Updated partial factor for actions (statistical variation)  $\gamma_{Sd,act}$  Updated partial factor for the models for action effects and for the simplified representation of actions
- Model uncertainties vary depending on the action effects → distinguish between
- $\gamma_{Sd,M,act}$  Bending moments
- $\gamma_{Sd,V,act}$  Shear forces
- $\gamma_{Sd,N,act}$  Axial forces
- Format differs from EC but is more accurate for evaluation

#### **Tools developed**

## PARTIAL FACTOR FORMAT FOR ASSESSMENT

Design value for resistance



 $\gamma_{m,i,act}$ Updated partial factor for the material or product property $\gamma_{Rd,act}$ Updated partial factor for the resistance modelModel uncertainties vary depending on the resistancemechanism -> distinguish between (RC structures) $\gamma_{Rd,M,act}$ Bending moments $\gamma_{Rd,V_s,act}$ Tensile forces in the web $\gamma_{Rd,V_c,act}$ Diagonal compression forces in the web $\gamma_{Rd,N,act}$ Axial compression forcesFormat differs from EC-2 but is more accurate for evaluation

#### **Tools developed**

# DEFAULT PROBABILISTIC MODELS COMPLYING WITH THE FOLLOWING REQUIREMENTS

- Representation of physical properties of the corresponding variable
- Consistency with JCSS models
  - Representation of the state of uncertainty associated with code rules
    - Representation of uncertainties by means of random variables, suitable for practical applications

$$X_i = Type(\mu_{X_i}; \sigma_{X_i})$$





### **UPDATED PARTIAL FACTORS**

#### For example partial factor for concrete strength versus CoV



# EXAMPLE

- Assessment of existing RC structure for new conditions
- Site data collection has been decided, planned and carried out
- Sample of n test results is available for updating of reinforcement yield strength, f<sub>vs</sub>



#### Assessment with site-specific models

# PROCEDURE

- 1. Statistical evaluation of results of observations
  - $\rightarrow$  PDF:  $f_{\chi}(x)$



2. Combination of the results of observations with the available prior information (default probabilistic models)



## PROCEDURE

 Description of the updated distribution function by means of relevant parameters: Type; μ<sub>X,act</sub>; σ<sub>X,act</sub>; x<sub>k,act</sub>



4. Coefficient of variation for the relevant function of updated random variables, depending on the partial factor format for assessment

# EXAMPLE

#### Partial factor for reinforcing steel takes into account

- Uncertainties related to the yield strength, f<sub>vs</sub>
- Uncertainties related to the cross-sectional area, A<sub>s</sub>

 $f_{ys}$  and  $A_s$  enter the LSF as a product: tensile force  $\rightarrow$  $F_{ys} = f_{ys} \cdot A_s$ 

Only f<sub>vs</sub> has been updated

– Updated coefficient of variation for the tensile force

$$V_{Fys,act} \cong \sqrt{V_{fys,act}^2 + V_{As}^2} \qquad V_{fys,act} = \frac{\sigma_{fys,act}}{\mu_{fys,act}} \qquad Default value \\ V_{As} = 0.02$$

## PROCEDURE

5. Updated partial factor, considering the updated variable dominating or non dominating (unknown in advance)



## PROCEDURE

# 6. Verification of structural safety with updated characteristic values and partial factors: $x_{ik,act}$ ; $\gamma_{Xi,act}$

Dominating variable unknown in advance  $\rightarrow$  trial and error or considering  $\alpha_x$ 



#### Assessment with site-specific models

### EXAMPLE

- Verification of bending resistance of RC element
- Only f<sub>vs</sub> has been updated
- Dominating variable: F<sub>vs</sub>
- − Verification of structural safety: M<sub>Ed,act</sub> ≤ M<sub>Rd,act</sub>

$$\mathbf{M}_{\mathsf{Rd},\mathsf{act}} = \frac{1}{\gamma_{\mathsf{Rd},\mathsf{M}}} \left( \frac{\mathbf{A}_{\mathsf{s}} \cdot \mathbf{f}_{\mathsf{ys},\mathsf{k},\mathsf{act}}}{\gamma_{\mathsf{s},\mathsf{act},\delta}} \cdot \mathbf{d} - \mathbf{0.5} \left( \frac{\mathbf{A}_{\mathsf{s}} \cdot \mathbf{f}_{\mathsf{ys},\mathsf{k},\mathsf{act}}}{\gamma_{\mathsf{s},\mathsf{act},\delta}} \right)^2 \cdot \frac{\gamma_{\mathsf{c}}}{\eta_{\mathsf{c}} \cdot \mathbf{f}_{\mathsf{ck}}} \cdot \frac{1}{\mathsf{b}} \right)$$





#### **ON THE ASSESSMENT OF DETERIORATING STRUCTURES**

- Introduction
- Updated models for the assessment of sound structures
- Corrosion-damaged reinforced concrete structures
- La Laguna cathedral
- Final remarks







#### MAIN EFFECTS OF CORROSION OF REINFORCEMENT BARS

- 1. Decrease of bar cross-section
- 2. Decrease of ductility of steel ( $\varepsilon_u$ : reduction of 30 to 50%)
- 3. Bond deterioration
- 4. Cracking of concrete cover (due to corrosion products)



Corrosion may affect performance at ULS and SLS

## ASSUMPTIONS

## Lower bound theorem of the theory of plasticity is valid

A load system, based on a statically admissible stress field which nowhere violates the yield condition is a lower bound to the collapse load.

## Stress field models can be established



#### **Required information**

- Geometry, particularly remaining bar cross-sections
- Material properties \_\_\_\_
- Bond strength

#### **Performance of corroded elements**

# SITE DATA COLLECTION

## Geometry and material properties can be updated







# **BOND STRENGTH**

- Pull-out tests on specimens with accelerated and natural corrosion
- Normalized bond strength depending on cross-section loss



#### **Performance of corroded elements**

# SIMPLE MODELS FOR ESTIMATE OF PERFORMANCE OF CORRODED STRUCTURAL ELEMENTS

Example: bending resistance



# **ESTIMATION OF MODEL UNCERTAINTIES**

- Available tests from a research project on the residual service life of RC structures [Rodríguez et al.]
- Bending tests on 41 beams, some with accelerated corrosion



Cross-sectional loss: Top < 30,3% Bottom 9,75% to 26,4%

- Bending failure in 25 beams, 15 with corroded reinforcement
   Material properties and geometry have partly been determined for the tested beams
- Estimation of model uncertainties

#### Validation of the model

# PARAMETERS FOR UNCERTAINTY VARIABLES

Comparison test – model and statistical evaluation of results



Upper bound: active
Lower bound: disregarded
Remaining cross-sections

| Model       | Distribution | μ    | CoV  |
|-------------|--------------|------|------|
| Lower bound | LN           | 1,34 | 0,11 |
| Upper bound | LN           | 0,97 | 0,11 |

# CONSEQUENCES

- Higher model uncertainties lead to increase in p<sub>f</sub>
- Partial factor should be increased

$$\mathbf{R}_{d,act} = \underbrace{1}_{\gamma_{Rd,act}} \cdot \mathbf{R} \left\{ \eta_{i} \cdot \frac{\mathbf{X}_{k,i,act}}{\gamma_{m,i,act}}; \mathbf{a}_{d,act} \right\}$$

- Further studies are required, for example for members with
  - Larger dimensions
  - Natural corrosion



# **ONGOING TESTS**

# Industrial building in the northwest of Spain

- Construction from the 40's of the last century
- In disuse for 20 years
- Exposure to marine environment during 70 years
- Change of use
  - Transformation into cultural centre
  - → Partial demolition required





## **ONGOING TESTS**

- Selection of representative, corrosion-damaged members for testing
  - 8 beams
  - **5** columns
  - 1 frame



#### Validation of the model

## SOME RESULTS

## Bending test on beam nº 1

- Deformation control
- Ductile behaviour







# THEORETICAL LOAD BEARING CAPACITY

### — Prior information

- Geometry: measured on tested beam prior to the test
- Material properties: determined for members from the same building
- Analysis based on *prior* information using stress field model and comparison to test
  - M<sub>ult,t</sub> = 127 kNm
  - $M_{ult,e} = 123$  kNm





#### **ON THE ASSESSMENT OF DETERIORATING STRUCTURES**

- Introduction
- Updated models for the assessment of sound structures
- Corrosion-damaged reinforced concrete structures
- La Laguna cathedral
- Final remarks







#### Context

# SAN CRISTÓBAL DE LA LAGUNA

- Historic city located in Tenerife
- Typical urban structure developed in Latin America during colonisation
- Declared a UNESCO World Heritage Site in 1999



Context

# CATHEDRAL

- Built over former church of Nuestra Señora de los Remedios
- Cathedral since 1818
- Declared in ruins in 1897 due to settlements induced damage
- Except neo-classical facade, it was completely demolished



Context

## CATHEDRAL

- Rebuilt between 1905 and 1913 in neo-gothic style according to engineering drawings by José Rodrigo Vallabriga
- Novel technology was used: reinforced concrete
  - Shorter construction time
  - Lower costs





#### **Motivation**

# **RISKS ASSOCIATED WITH SCANTILY PROVEN TECHNOLOGY**

- Aggregates with inbuilt sulfates, chlorides, seashells, ...
- Concrete with high porosity and low resistivity
- High relative humidity and filtration of rainwater
- Ongoing deterioration mechanisms with severe damage to both, concrete and reinforcement
  - Corrosion
  - Spalling





Motivation

# **RISKS ASSOCIATED WITH SCANTILY PROVEN TECHNOLOGY**

- Less than 100 years after reconstruction, the cathedral was to be closed to the public again and was propped ...
- Detailed assessment showed
  - Impossibility to detain deterioration mechanisms
  - Technical difficulties and uncertainties entailed in repairing roof
- Recommendation to demolish and rebuild the roof maintaining the rest of the temple





# WORLD HERITAGE SITE

- Authorities wish to save the existing main dome
- For this purpose, durability requirements are reduced
  - Service period for normal building structures, not for monumental buildings
  - Future techniques might be suitable to fully detain deterioration mechanisms





#### **Description**

# GEOMETRY – Global system

Lantern Spherical dome

Cylindrical "drum"



## Structural members of the spherical dome

- 8 arches
- Shells
- Tension ring

# **STRUCTURAL BEHAVIOUR**

- No significant seismic actions
- Distributed loads produce mainly membrane forces → ←
- Thrust is equilibrated by tension ring forces  $\leftarrow \equiv \rightarrow$
- Mainly vertical loads are transmitted to the robust cylindrical "drum"
- Assessment focuses on the dome



Information

#### **PRIOR INFORMATION**

- Previous assessment of the existing building, particularly the lower roof
- Available information about
  - Material properties
  - Cross sections of main elements
  - Deterioration mechanisms
- Prior information for the main dome



# DATA ACQUISITION PROGRAM

- Geometry
  - Overall system dimensions
  - Cross sections of structural and ornamental elements
- Self weight and permanent actions
- Material properties
- Qualitative and quantitative determination of damage
  - Cracks
  - Spalling
  - Carbonation and chloride ingress
  - Corrosion velocity and cross section loss
  - Material deterioration such as crystallization of salts, efflorescence, humidity
  - Previous interventions



## **CROSS SECTIONS**

 Parameters for different variables derived from a minimum of 4 measurements





#### **CROSS SECTIONS**

### Equivalent cross sections for structural analysis

0,77





# **SELF WEIGHT AND PERMANENT ACTIONS**

- For each layer, j, establishment of
  - Thickness, h<sub>i</sub>
  - Density of material,  $\rho_i$



- Mean values and coefficients of variation for self weight and permanent actions
- Updated partial factors, for example for self weight

$$\gamma_{g_c,act,\nu} = 1 - \alpha_{g_c} \cdot \beta \cdot \sqrt{V_{\rho_c,act}^2 + V_{h_c,act}^2} = 1,11$$
$$\gamma_{Sd,N,act,\nu} = \gamma_{Sd,N,\nu} = e^{-\alpha_{\xi_{E,N}} \cdot \beta \cdot V_{\xi_{E,N}}} = 1,06$$

# **MATERIAL PROPERTIES FOR REINFORCING STEEL**

- Manufacture of specimens
- Execution of tensile tests



## **MATERIAL PROPERTIES FOR REINFORCING STEEL**

Evaluation of test results and combination of information



- Updated parameters: LN;  $\mu_{fys,act}$ ;  $\sigma_{fys,act}$ ;  $f_{ys,k,act}$ ;  $\gamma_{s,act}$ - Updated characteristic values
  - φ < 6 mm:
- f<sub>ys,k,act</sub> = 304 N/mm<sup>2</sup>
- $\phi > 6 \text{ mm}:$
- $f_{ys,k,act} = 262 \text{ N/mm}^2$

# MATERIAL PROPERTIES FOR CONCRETE

- Manufacture of specimens
- Execution of compression tests



# MATERIAL PROPERTIES FOR CONCRETE

- Evaluation of test results and combination of information
- Updated parameters
  - Compressive strength: LN;  $\mu_{fc,act}$ ;  $\sigma_{fc,act}$ ;  $f_{ck,act}$ ;  $\gamma_{c,act}$
  - Modulus of elasticity:  $\mu_{Ec,act}$ ;  $\sigma_{Ec,act}$
  - Updated characteristic values
    - Arches:
    - Shells:
    - "Drum":

- $f_{ck,act} = 6,8 \text{ N/mm}^2$ 
  - $f_{ck,act} = 3,1 \text{ N/mm}^2$
  - $f_{ck,act} = 4,9 \text{ N/mm}^2$







# **REINFORCEMENT CORROSION**

- Corrosion rate measurements require careful interpretation
- Mean velocity to be estimated from remaining cross sections



Extrapolation for future service period: A<sub>s.corr</sub>

#### **Structural analysis**

# SHELLS AS AN EXAMPLE

### Relevant design situation for structural safety

- Permanent actions and influences
   Self weight structural elements
   Self weight ornamental elements
   Corrosion
- Leading variable action
   Wind
- Accompanying variable action
   Temperature increase
- Non linear FE analysis





# SHELLS AS AN EXAMPLE

- Updated design action effects
  - N<sub>Ed,max,act</sub> = 77 kN/m (+ compression)

### Updated design resistance at the end of future service period

N<sub>Rd,act</sub> = 219 kN/m

Verification

N<sub>Ed,max,act</sub> < N<sub>Rd,act</sub>





#### Decision

## RECOMMENDATION

### Structural reliability can be verified, but

- Severe damage to concrete and reinforcement
- Impossibility to detain deterioration mechanisms
- Technical difficulties and uncertainties entailed in repairing dome

Demolition and reconstruction of the roof is advisable







#### **ON THE ASSESSMENT OF DETERIORATING STRUCTURES**

- Introduction
- Updated models for the assessment of sound structures
- Corrosion-damaged reinforced concrete structures
- La Laguna cathedral
- Final remarks







#### FINAL REMARKS

- In the safety assessment of existing structures, many uncertainties may be reduced
- Probabilistic methods are most accurate to take into account site-specific data
- Such methods are not fit for use in daily practice
- Rational decision making should be possible by using a partial factor format for assessment





#### FINAL REMARKS

- Tools have been developed to accommodate site-specific data by updating characteristic values and partial factors
- Further efforts are needed to extend these tools to the assessment of deteriorating structures

