Esercitazione 3 - II modulo

Corso di Elaborazione e Trasmissione delle Immagini

Pisa, 13 Dicembre 2006

Argomenti proposti

- Catena di elaborazione dei dati telerilevati
- Il sensore SeaWiFS
- Calibrazione radiometrica
- Correzione atmosferica VIS/NIR
- Mascheratura di terra e nubi
- Stima dei parametri otticamente attivi

Catena di elaborazione

Sea Star: tecnica di lancio

Il Iancio del Pegasus con a bordo il SeaStar (Orbview 2) con a bordo il SeaWiFS venerdi' 1 Agosto, 1997

Sea Star: il satellite

Sea Star: copertura orbitale

Sea Star: caratteristiche della missione

Orbit TypeSun Synchronous at 705 kmEquator CrossingNoon +20 min, descendingOrbital Period99 minutesSwath Width2,801 km LAC/HRPT (58.3 degrees)Swath Width1,502 km GAC (45 degrees)Spatial Resolution1.1 km LAC, 4.5 km GACReal-Time Data Rate 665 kbps (LAC + status)Revisit Time1 dayDigitization10 bits

LAC=Local Area Coverage, full resolution, memorizzazione massima=10' di volo **GAC**=Global Area Coverage, bassa risoluzione, copertura giornaliera

Il sensore SeaWiFS

SeaWiFS

SeaWiFS: bande spettrali

2 Bande NIR larghe 40nm

Esempio di immagine SeaWiFS in banda 2

Esempio di immagine SeaWiFS: ricostruzione truecolor

6 = R

- 5 = G
- **1** = **B**

Tempesta di sabbia dal Sahara

SeaWiFS: calibrazione radiometrica

SeaWiFS effettua la rimozione dell'offset dai dati grezzi puntando il telescopio fuori del campo di vista terestre.
I dati pervengono già privi di errore di offset.

 Calibrazioni del guadagno sono effettuate con un calibratore solare(cadenza: poche orbite) e puntando l'intero satellite verso la luna (cadenza: alcuni mesi).

 Perchè le nubi non saturino la catena di misura (front-end + quantizzatore) è adottata una curva di risposta bilineare.

$$DN_{corr}[i,j,l] = DN_{mis}[i,j,l] - DARK[i,l]$$
$$L[i,j,l] = G\{l, DN_{corr}[i,j,l]\} \cdot DN_{corr}[i,j,l]$$

Riga *i* Colonna *j* Banda *l*

SeaWiFS: calibrazione radiometrica

Queste curve vengono in genere implementate tramite LUT (Look Up Table)

Effetti atmosferici ed interazione con la superficie marina

Contributi alla radianza totale al sensore NASA

Ocean Color Calibration

Definizione della geometria di ripresa

Contributi alla radianza totale al sensore

Tecnica di correzione atmosferica

Definiamo:

$$\varepsilon(\lambda_{i},\lambda_{j}) = \frac{L_{a}(\lambda_{i})}{L_{a}(\lambda_{j})} \cdot \frac{E_{0}'(\lambda_{j})}{E_{0}'(\lambda_{i})} = \frac{\omega_{a}(\lambda_{i}) \cdot \tau_{a}(\lambda_{i}) \cdot p_{a}(\theta,\theta_{0},\varphi,\varphi_{0},\lambda_{i})}{\omega_{a}(\lambda_{j}) \cdot \tau_{a}(\lambda_{j}) \cdot p_{a}(\theta,\theta_{0},\varphi,\varphi_{0},\lambda_{j})}$$

$$Trasmittanza dello strato di ozono$$

$$L_{x}(\lambda) = \frac{\omega_{x}(\lambda) \cdot \tau_{x}(\lambda) \cdot E_{0}(\lambda) \cdot p_{x}(\theta,\theta_{0},\varphi,\varphi_{0},\lambda)}{4 \cdot \pi \cdot \cos(\theta)} \cdot T_{oz}(\theta,\theta_{0},\lambda) \quad ; x = a, r$$

Legge di variazione di ϵ nell'intervallo delle lunghezze d'onda coperte dal SeaWiFS

$$\mathcal{E}(\lambda_i,\lambda_j) = e^{c \cdot (\lambda_j - \lambda_i)}$$

Nel caso del SeaWiFS si utilizzano le bande 7,8 sui pixel di mare (scuri nel NIR)

$$c = \frac{\ln[\varepsilon(\lambda_7, \lambda_8)]}{\lambda_8 - \lambda_7}$$

Tecnica di correzione atmosferica

Mascheratura

Esempio di istogramma di una immagine in banda 7

Percentuali relative di radianza atmosferica e radianza *water-leaving*

Concentrazione di pigmenti clorofillacei nel Mare di Alboran

Concentrazione di pigmenti clorofillacei nel Mar Tirreno

Chlorophyll Concentration Map from SeaWiFS data.

Acquisition Date: 21/07/1998 Acquisition Time: 11:29 GMT