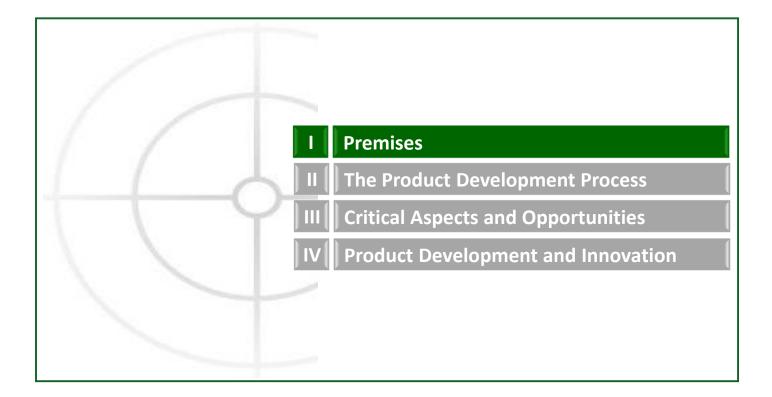
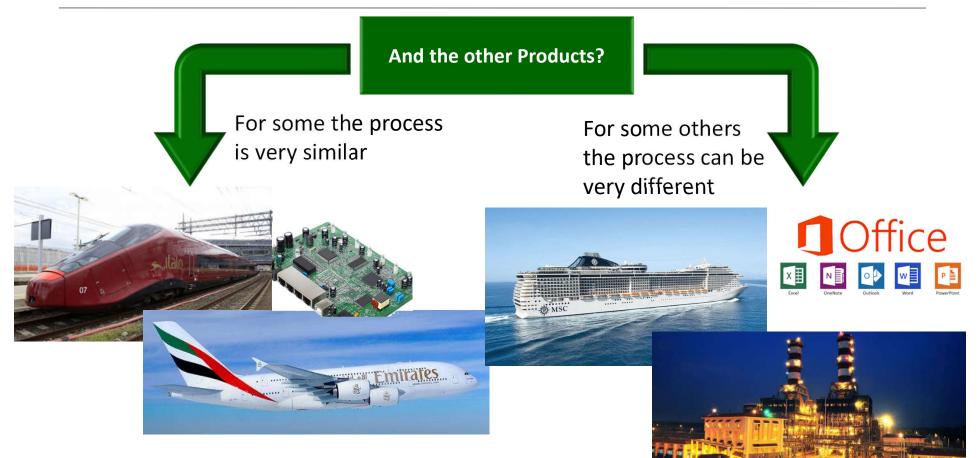

The New Product Development Process in the Modern Mass Production Industries

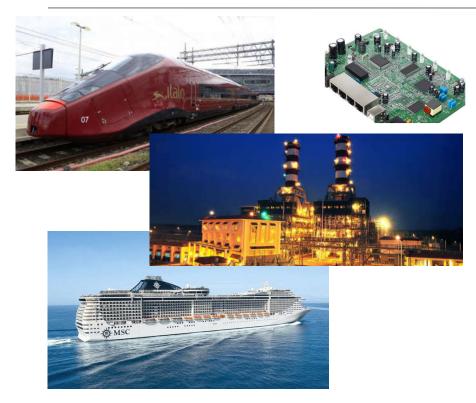

Raimondo Hippoliti 2017 ©

Summary

Summary



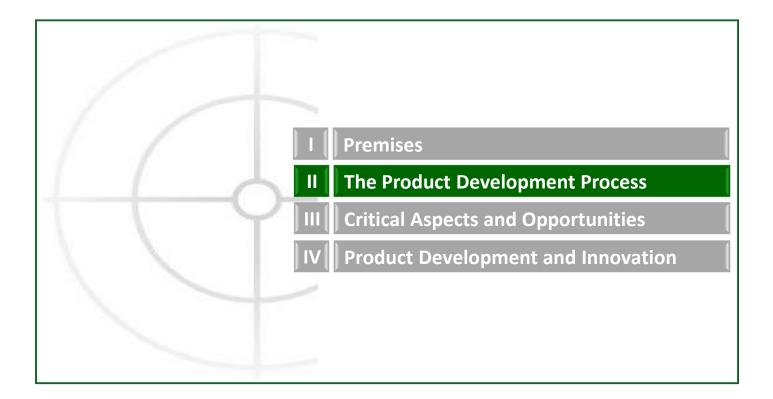
Premises



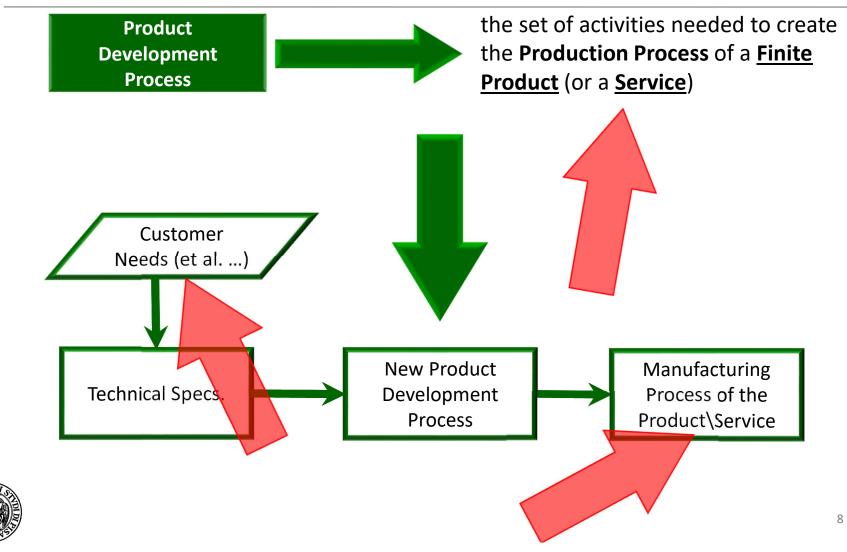
Premises

Premises

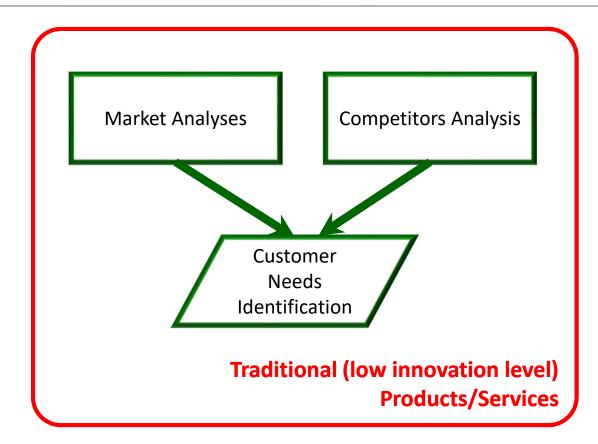
For "hard" products it is mainly the size of the production that makes the difference ("mass" production or 1/2 pcs.)



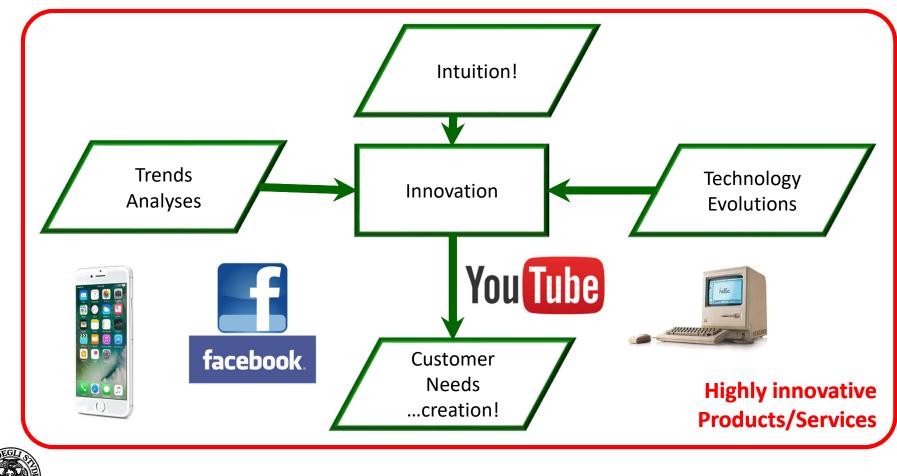
Software follows rules slightly different, considering the close-to-zero industrialization time.



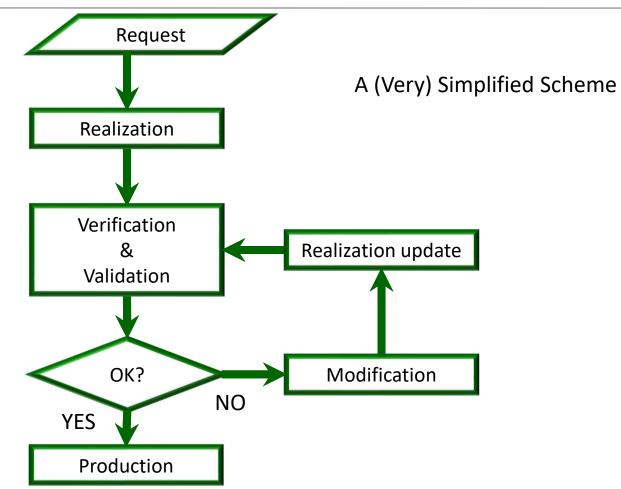
Summary



Product Development Process - Definition

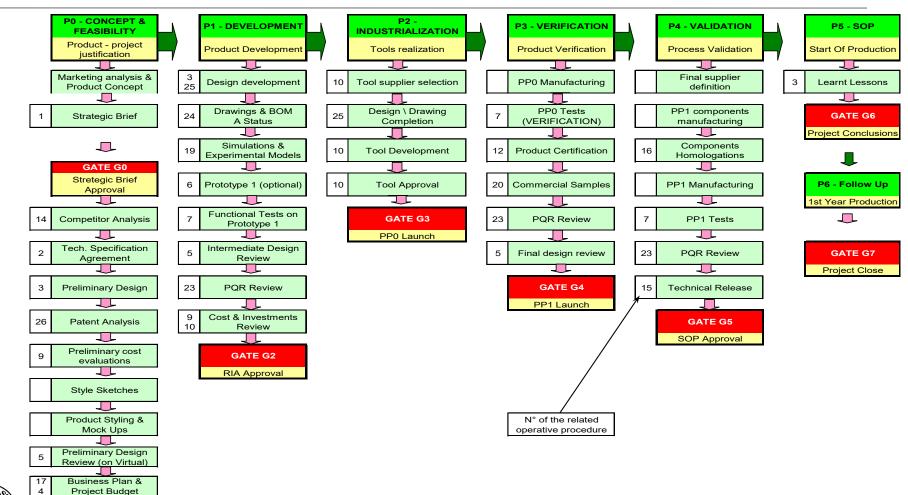


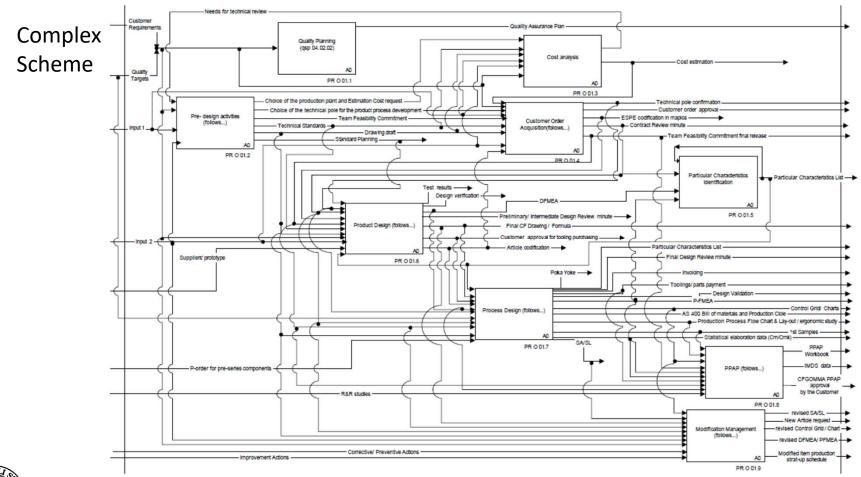
Product Development Process – Inputs


Product Development Process – Inputs

Product Development Process - Characteristics

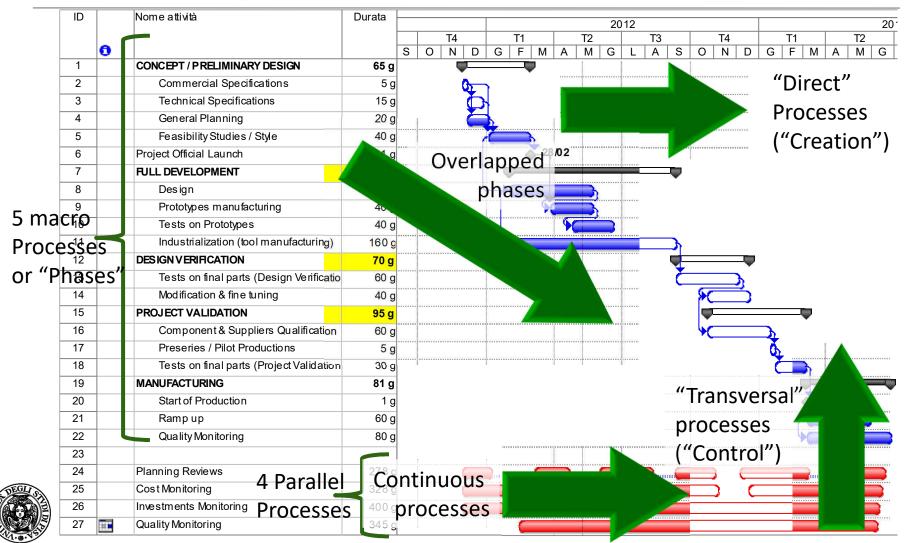
Product Development Process – Schemes




Product Development Process – Schemes

GATE G1

Project (and RIA) Preliminary Approval



Product Development Process – Schemes

Product Development Process – Standard Scheme

Product Development Process – The "Direct" Processes

"Creative" part of the entire Product Development Process.

➢ Huge involvement of <u>specialists</u>.

Activities are strictly interconnected and overlapped each other.

➢ Involved <u>all sectors of the Company</u> and of the <u>Suppliers</u> as well.

The "Direct" processes are usually organized in 5 main steps/phases:

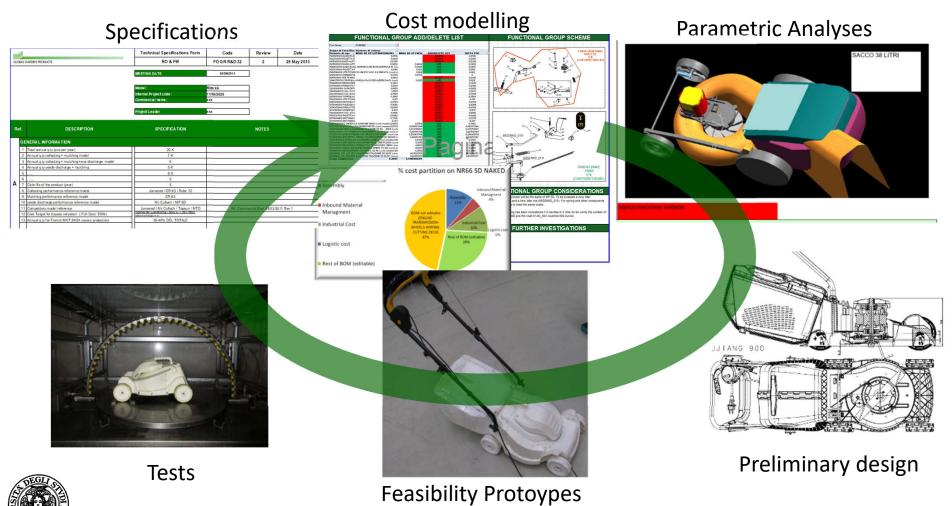
- 1. Preliminary Design
- 2. Full Development (full scale design, prototype and testing, industrialization)
- 3. Project Verification,
- 4. Product Validation,
- 5. Manufacturing (start of production, production growth, quality monitoring).

Product Development Process – The "Direct" Processes

The <u>Commercial</u> (Marketing) <u>Specifications</u> are translated into the <u>Technical</u> ones.

1. Preliminary Design

- (When needed) the <u>Style</u> concept of the machine is developed.
- The <u>technical feasibility</u> of the project is analyzed.
- All the <u>economics evaluations</u> (costs, investments, risks,) are performed.
- A preliminary <u>industrial analysis</u> (manufacturing processes to be adopted, tools' suppliers, plant selection,....) is developed.
- In several cases also <u>prototypes</u> are built and <u>tests</u> are performed.


It is the most critical phase

- It can finish also with a <u>negative result</u>
- \rightarrow it is not wise to save money and time in this phase.

≈ 5-10%

Product Development Process – Preliminary Design

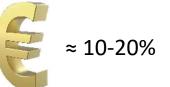
Product Development Process – The "Direct" Processes

- The <u>Design & Calculations</u> activities are massively deployed.
- \geq Test on prototypes are performed in order to get confirmation about the adopted technical solutions and to tune them.
- \geq The Industrialization (tools and assembly lines manufacturing) is developed and fully realized, using the most "concurrent" approach possible.
- The first batch of "final" machines are realized.

 \rightarrow It is the <u>most expensive</u> part of the process.

 \rightarrow It is the most critical phase for finale <u>timing and quality results.</u>

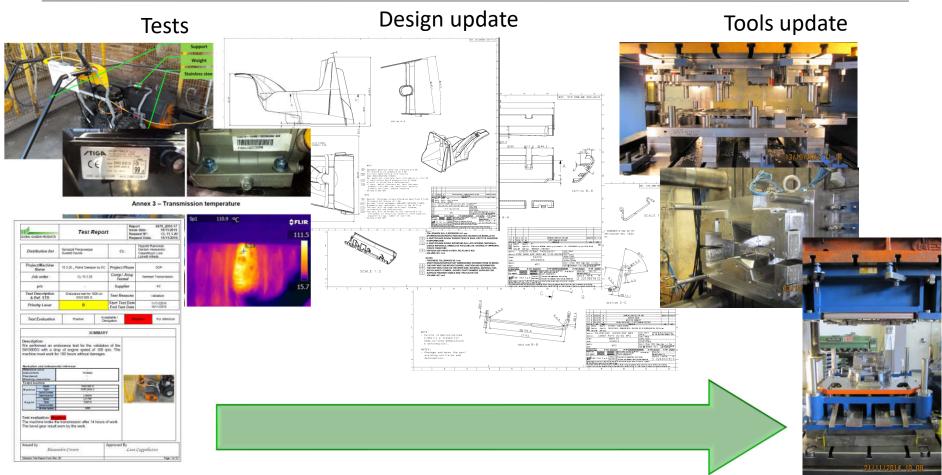
→ managerial skills becomes relevant.


Product Development Process – Full Development

Drawings & Tools Calculations Tests & 1° production batch 0135_2015-15 13/10/2015 CL 15_5_10 02/10/2014 Report Issue date: Resumpt N DEFINITIVE Brished Code DEFINITIVE ROV SIGNAL code Responsible of the Activity / Drawing Picture an operated weilighted Description II Test Report Calculation Report New plastic E-WBH330 Report \$500(2016) Issue date: 2016/04/07 Request N*: 16042 Request Date: 2016/05/31 100 Report Issue date: Request N Asteribly chassis FEM analysis Test Repor Ce Distribution list Componer ERONE DKISK TELAIONRIS Cc Distribution list mondo Hippoliti Co Project Phase from 3 ab ards 01MP2.8 New E-WBH Project Phase Project/Machine Nan Phase 1 10.420_00 Component 106/20 STRA NOTORE NRIS GRZ Supplier 5.10 Tested Hundle Comp. Assy Calculated Job order 15 5 30 & Ref. STL Supplier 00P GGP p/a 322066789/0 110.420_005 Component 0062011 AS TRA ANTERIORE SUP ERIORE NRS Supplier Test Reasons Verilizator End Test Date 0011(201 End Test Date 0011(201 Test Descriptio & Ref. STD AS TRA A CO. TUBI SUPP. SACCO NES FEM structural analysis Test Reasons lacements evaluation 10.420 008 Component 06/201 Negative Test Evaluation For netwo Start Test Date 31/01/2016 End Test Date 07/04/2016 Negative Priority Level A 10.420_00 FA SUPPORTO TRANSAKLE NRS SUNMAR ARRAY CON TRUCK Test Evaluation Acceptable For reference Negative AS TRAP OFTER ORE INFO 420 01 Toone STEP1 SUMMARY VON MISES STRESS DISTRUBUTION ud By Luca Cappellazzo Same and

Product Development Process – The "Direct" Processes

- The machines manufactured with the components got from the final tools are massively put in test.
 - According to the results of the tests, drawings and tools are updated in order to
- According to the results of the tests, drawings and tools are updated in order to fix the project, enabling him to successfully pass all the required test specifications.
- At the end of the Project Verification phase a formal design review should be performed, in order to fix once for all the final configuration of the machine that shall move to the Project Validation.


3. Project verification

Step of capital importance to get a good, robust and reliable product
 The fundamental know how of the Company (the <u>Test Specifications</u>) is used in order to approve the project.

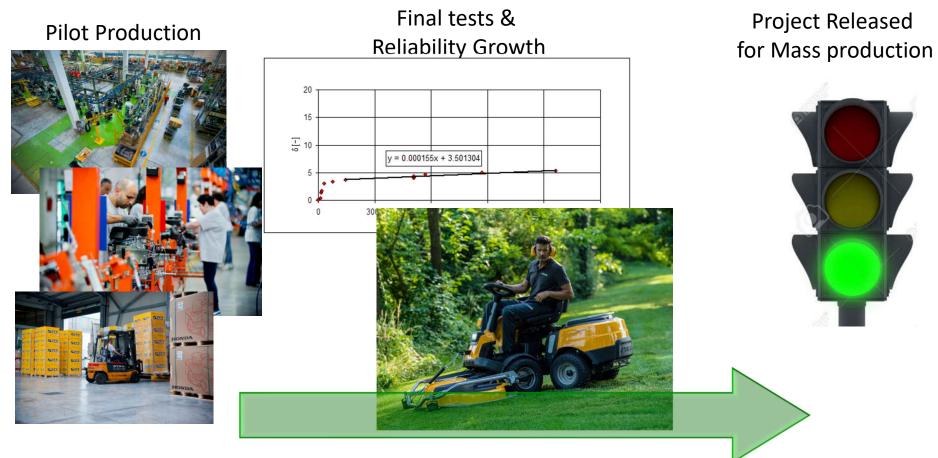
Product Development Process – Project Verification

Product Development Process – The "Direct" Processes

The final machines (final design, final tools, final manufacturing processes) are produced in a relevant number.

4. Product validation

- All the components/subsystems/systems of the machine are homologated (released for mass production).
- A relevant number of machines is put in test, trying to estimate the reliability characteristics (MTBF and teething problems) of the machines.
- The Product (project + process)is released for start of production



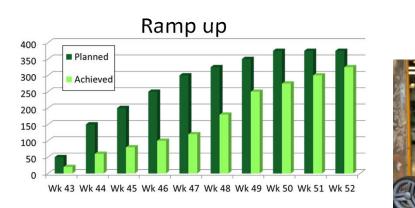
➔ The entire project and its manufacturing process, in the final working conditions, is verified.

 \rightarrow Only minor problems are usually found.

Product Development Process – Project Validation

Product Development Process – The "Direct" Processes

- The production starts up, progressively growing from small rates to progressively higher ones.
- The Manufacturing Processes are carefully audited in order to assure their full compliance to the Specifications.
- Quality audits and (short) tests on machines coming from production are performed to verify the stability and quality of the manufacturing processes
- Customers' returns are strictly monitored



→ Extremely critical phase, being usually not monitored enough.

25

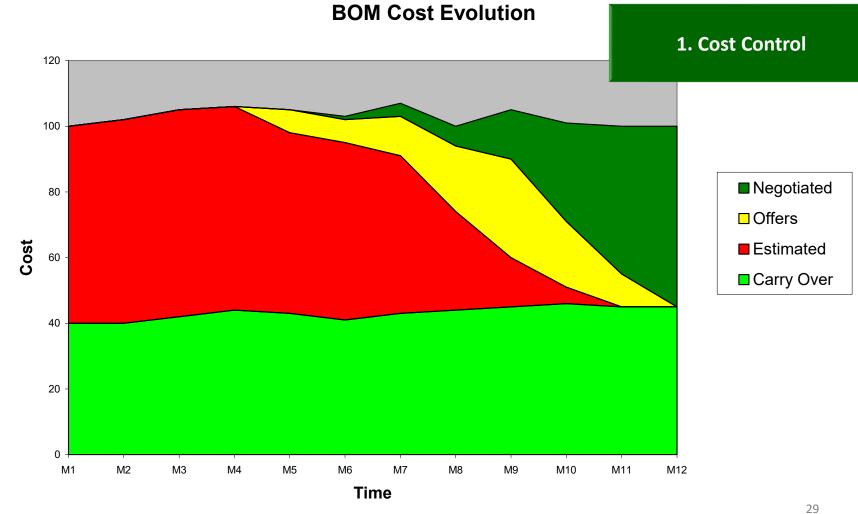
Product Development Process – Manufacturing

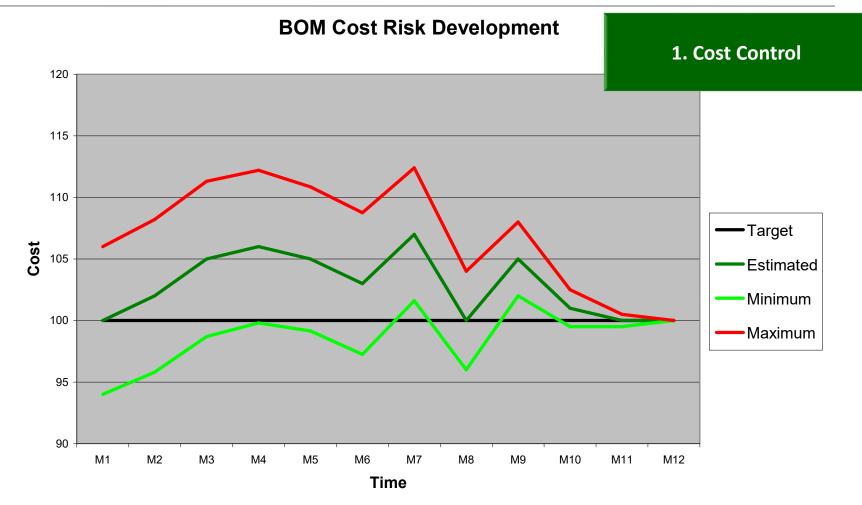
Product Audits & Process final tuning

Final release

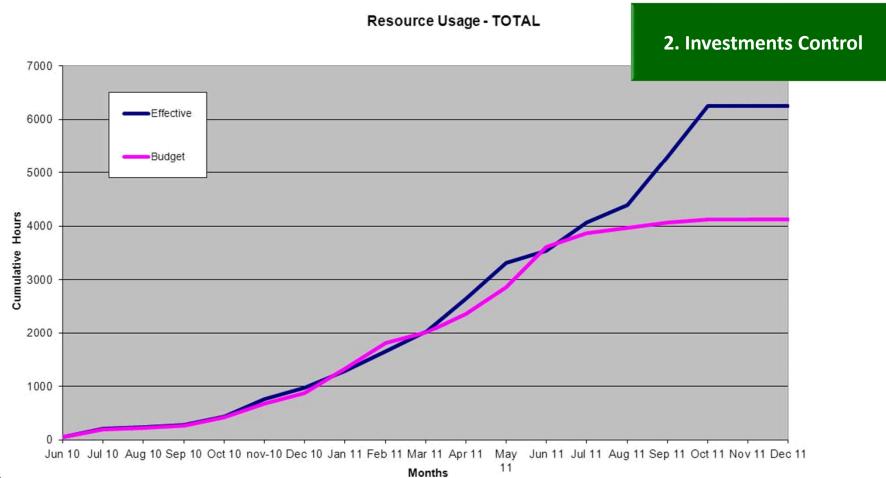
- "<u>Control</u>" part of the process : focused to monitor all the aspects of the project development: timing, costs, investments, achieved quality level,...
- Processes not related to activities happening in a precise moment of the project, but <u>constantly present</u>.
- Absolutely <u>not minor processes</u>!
- Usually owned by <u>managerial resources</u>.
- The main are:
 - 1. Costs review
 - 2. Investments review
 - 3. Planning review
 - 4. Quality review

The BOM of the machine is created, starting from a very preliminary status.


1. Cost Control


- The cost of each component is estimated and then tracked.
- All the other costs related to the machine (internal/external assembly processes, fixed and semi-fixed costs related to the plant) are taken into account.
- Progressively the accuracy level increase and the indetermination about the cost estimation decreases.

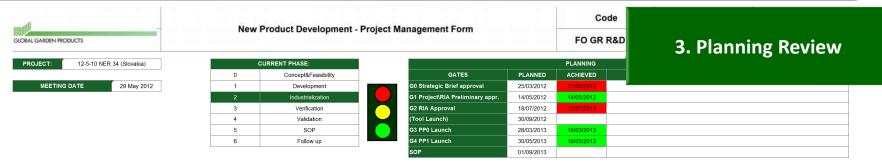
- * "Reverse" process: cost limits are fixed and design is a consequence.
 Quite sophisticated cost simulator tools are usually used.
- → Continuous process, that progressively gets more accurate results. .


The progression of the expenses related to the project (the "investments") are monitored – usually on a monthly base.

2. Investments Control

- The comparison with the limits planned in the project approval milestone are constantly checked.
- Any deviation (unpredicted expenses, increase in the tool costs, ...) are reported to the Top Management

The more complex is the project the more complex will be the investments' monitoring.



- The comparison between what was planned to do and what has been really achieved is reviewed, generally on an – at least - monthly base.
- The review can be performed analyzing in detail the status of each activity or in a simpler way, controlling the percentage of the activities closed.

 \rightarrow it is probably the most difficult process to be properly performed

3. Planning Review

		DRAWING	S RELEASES						PARTS RELEASES	S			ד	DOLS DEVELOPM	ENT & APPROVA	L ,
	FO GR R&I	0 06 - Product Co	osts & Drawings Ma	nagement			F	O GR R&D 06 - Pr	oduct Costs & Dra	awings Manageme	nt		FO GR F	&D 03 - Project C	APEX Manageme	nt Form
	Last update			12 February 2012			Last	update			12 December 2010)	Last u	pdate	12 Decen	nber 2010
	Responsible			Project Leader			Respo	onsible			Project Leader		Responsible:	Toolir	ng Purchasing Ma	nager
TOTAL NR. OF DRAWINGS	REL. FOR PP0 & SERVICE (C status)	REL. FOR PP1	MODIFICATION / FINE TUNING FOR PP1	REL. FOR SOP (ADB Status)	NOT NEEDED	TOTAL NR. OF PARTS	REL. FOR PP0	REL. FOR PP1	REJECTED	UNDER CONCESSION	REL. FOR SOP	NOT NECESSARY	TOTAL NR. OF TOOLS	AVAILABLE FOR PP0 & SERVICE	AVAILABLE FOR PP1	AVAILABLE FOR SOP
NOTES						NOTES							NOTES			

				TESTING DEVELO	OPMENT STATUS								
				FO GR R&D 27 (RO/FM) / 28 (WBH) / 33-43 (HH a	and Tillers)							
	Responsible			Test Engineer		Last		12 December 2010					
		РРО Т	ESTS		PP1 TESTS								
TOTAL NR. OF REQUESTED TESTS	NR. OF TEST PERFORMED	NR OF TEST WITH NEGATIVE RESULT	REQUESTED ENDURANCE TESTS	PERFORMED ENDURANCE TESTS	TOTAL NR. OF REQUESTED TESTS	NR. OF TEST PERFORMED	NR OF TEST WITH NEGATIVE RESULT	REQUESTED ENDURANCE TESTS	PERFORMED ENDURANCE TEST				
OTES:													

IN ROUTI PIO							
ate	ject Quality Review 12 December 2010						
Tooli	ng Purchasing Manager						
OTAL NR. OF "CLOSED ISSUES"	TOTAL TO BE CLOSED WITH A SCORE > 6	SCORE					
	Tooli DTAL NR. OF "CLOSED	Tooling Purchasing Ma DTAL NR. OF TOTAL TO BE "CLOSED CLOSED WITH A					

		CERTIFIC	TION ACTIVITIES					
	Responsible	Certification Manager		Last	update		12 Decen	nber 2010
			Declaration	of Conformity		Instructio	n Manuals	
	TUV\LN	E HOMOLOGATION	sкu	Issued Docs.	s	ки	lss	ued
					Engines	Machines	Engines	Machines
A DEGLI ST								
	NOTES\		NOTES		NOTES			

	BOMs S	TATUS							
Last u	1ber 2010								
Responsible:	Tooli	ing Purchasing Manager							
MACHINES SPECIFIED	BOMs AVAILABLE FOR PP0	BOMs AVAILABLE FOR PP1	BOMs AVAILABLE FOR SOP						
NOTES			34						

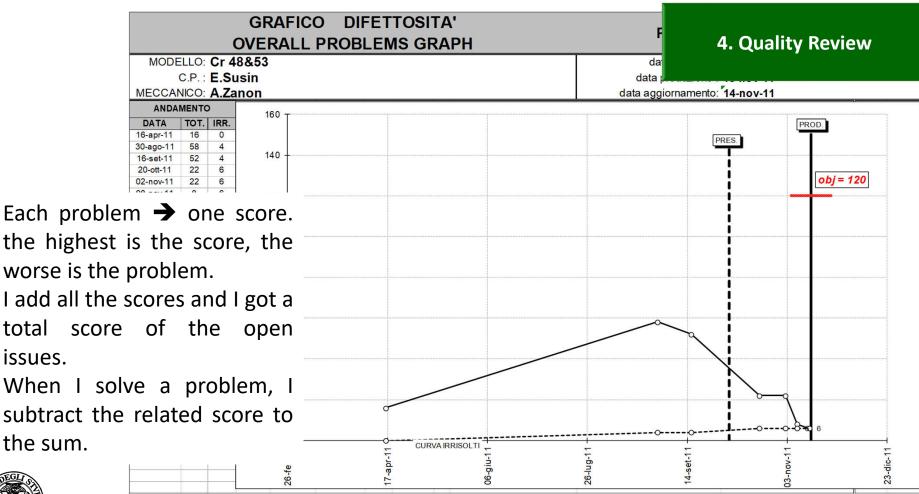
P0 - CONCEPT & FEASIBILITY Product - project justification	P1 - DEVELOPMENT Product Development				Product Developm ject Management F		Code	Review	Date
Marketing analysis &				GATE 1 -	Project Preliminary	Approval	FO GR R&D 04	10	26 October 2016
Product Concept									MEETING DATES
1 Strategic Brief	24 Drawings & BOM A Status							PLANNED	14 May 2012
	19 Simulations & Experimental Models		MEETING ATTENDANTS		12-5-10 NER 34 (Slovakia)			ACHIEVED 1st	10 May 2012
GATE G0								ACHIEVED FINAL	14 May 2012
Stretegic Brief Approval	6 Prototype 1 (optional)				STATUS O	F THE ACTIVITIES			
14 Competitor Analysis	7 Functional Tests on Prototype 1	N°	MATTER	REQUIRED ACTIVITIES	RELATED FO & PR	ACTIVITIES STATUS AT	10 May 2012	RESPONSIBLE	EXPECTED CLOSURE DATE
2 Tech. Specification Agreement	5 Intermediate Design Review	1	Competitor Analysis		PR GR R&D 16 FO GR R&D 29, 30 & 31.			Project Leader	
3 Preliminary Design 26 Patent Analysis	23 PQR Review 9 Cost & Investments 10 Review	2	Technical specifications definition	Definition and agreement with the Product Management of the technical specifications	PR GR R&D 05 FO GR R&D 32			Project Leader	
9 Preliminary cost evaluations	GATE G2 RIA Approval	3	Patent Analysis		PR GR R&D 23 FO GR R&D 1-2			Project Leader	
Style Sketches		4	Preliminary Planning	Definition of a first temptative planning of the project	PR GR R&D 7			Project Leader	
Mock Ups 5 Preliminary Design Review (on Virtual) 17 Business Plan & Project Budget		5	beamt Lessons Analysis	Analysis and discussion among the Project Team Members of the Learnt Lessons accumulated in the database and related to the product analy (i.e. RO, FM, WBH,) of the product under development	PR GR R&D 20			Service Mgr.	
GATE G 1 Project (and RIA) Preliminary Approval)	6	Market Problems and Claims Analysis	Analysis of the most frequent problems and claims coming from the market on similar products	-			Service Mgr.	
		7	Service Special Requirements	List of the special needs required by Service (e.g.: requirements related to electromics)	-			Service Mgr.	
DEGLI		8	Preliminary RIA	Approval by GMM of the preliminary RIA that will finance all the preliminary studies & prototypes	PR GR AFC 1			Project Leader	

F													3		Plan	ning	g R	eview
activity n°	LAST REQUEST 2817	project code	10000 8000 4000 0 TOTALhous waiting handheld ong + q -hh	business	developement phase	activity type	date of request arrival	requested activity end date	in delay expiring in next 30 days expiring in next 30 days expiring in next 30 days expiring in next 60 days total for FY 3015 = 38275 2013-14 activities = hours OPEN 494 = 9005 with forecast activities = hours as FILTERED 11 = 182 in this table activities = hours	i educa	work hours torecast	priority	operator	status	activity START date	activity END date	currently worked hour	report n°
	-	-	name 🚽	-		_	Ŧ	. ,	v	-	-	-	T				-	-
1528	313/2011	11 4 30	Front Accessories for TCHE and MP platforms	RO		MEC.TEST	15/09/11	30/11/11	Test durata pala Vergani su MP98 Graz	ziotto	8	A.		cancelle				
5719	1855	1X 0 10	Attività Struttura R&D\Staff Activities	STAFF	MASS P.	MEC.TEST	04/06/14	30/06/15	Inserimento in CMS dei report rumore mancanti Cappe	ellazzo	40	с	scapinello	ongoing	04/06/14		21	
7057	CL 15 1 10	15 1 10	Stiga Decks for Endeavour	FM	PROTO	MEC.TEST	06/02/15	30/06/15	Brakes deck 95 Soli	ligo '	16	в		waiting				
7058	CL 15 1 10	15 1 10	Stiga Decks for Endeavour	FM	PROTO	MEC.TEST	06/02/15	30/06/15	Stability test deck 85 Soli	ligo	12	в		waiting				
7059	CL 15 1 10	15 1 10	Stiga Decks for Endeavour	FM	PROTO	MEC.TEST	06/02/15	30/06/15	Noise deck 95 Soli	ligo	4	в		waiting				
7060	CL 15 1 10	15 1 10	Stiga Decks for Endeavour	FM	PROTO	MEC.TEST	06/02/15	30/06/15	Stopping time deck 95 Soli	ligo	16	в		waiting				
7061	CL 15 1 10	15 1 10	Stiga Decks for Endeavour	ΜH	PROTO	MEC.TEST	06/02/15	30/06/15	Performances test (in comparison with competitors) Soli	ligo 4	40	в		waiting				

Product Development Process – The "Transversal" Processes

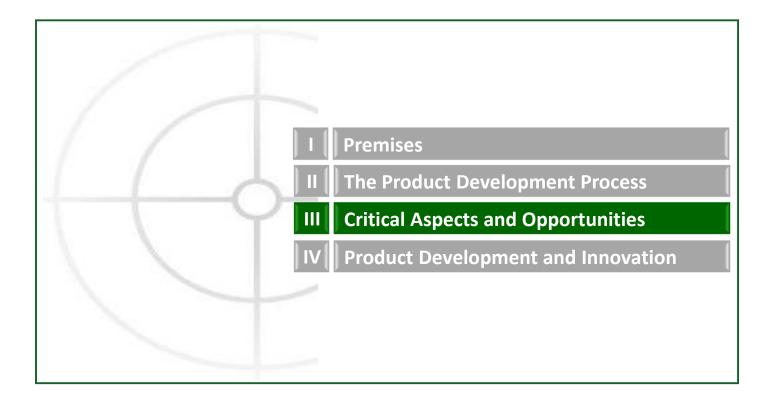
Product Development Process – The "Transversal" Processes

Quality = <u>Total Quality</u>, i.e. Customer Perceived Quality + Performances + Reliability 4. Quality Review


- Each problem found during the development must be accurately reported, listed, analyzed and the related corrective action(s) identified and put in place.
- Each problem must (not should, must!) have <u>one responsible</u> for the solution, that coordinates the efforts of all the other, and a <u>deadline</u> for the timing.
- The problem will be considered solved only when the <u>experimental evidence</u> of it will be available, not earlier.

- Complex process, dramatically important, not always taken in the correct consideration.
- Mandatory rule: who is in charge to identify the problems (and certify that they have been solved) must always be different from who (creates and) solves them.

Product Development Process – The "Transversal" Processes



- 1. The Product Development Process is a very complex, cross functional and heavy process. All the departments of the Company are involved in it and must contribute.
- 2. It is a process with a lot of contributors. It is a very well "equilibrated" one. The difference is usually not done by the designer(s), but by the team.
- 3. It is a process were not only specialist/technical people are relevant, but also mostly managerial people are important. This is more and more true, when the complexity of the product under development grows.
- 4. Despite what could be imagined from outside, in most cases I personally got in touch in the past, the set of tools used in managing the project is quite simple: Excel files and not much more!

Summary

A Company is made by procedures, databases, tools, machines, plants,.... but mainly by the <u>people</u> (and by their <u>behaviors</u>....).

1. The Human Resources

- Technical skills and team working capability are important at the same level.
- To focus the human resources in a <u>common approach to the work and in the</u> <u>compliance of the Company's rules</u> is fundamental.

A correct process for <u>selection and development</u> of the human resources is at the base of the health of the Company.

- Product Development is not a job only for R&D: all the **2.** Cross Functionality \succ Company's functions are involved (even if sometime the **Suppliers** other Company's Functions do not have awareness of that).
- The involvement of the Suppliers is mandatory. Today, in almost all the fields, the Manufacturer has lost most of the Know-How about the single Components. This K.H. is spread among the entire Supply chain. In several cases relevant innovation contents are coming directly by the Suppliers.
- The possibility to use external Engineering Companies must be considered as an opportunity and not as a problem (even if the complete outsourcing of skills that can be strategic, could be an error).

&

Processes' speed and efficiency are of capital importance in the Competition. The IT support can facilitate the processes in that sense. (NOTE: facilitate, not replace or substitute....)

3. The IT Role

IT support must be <u>tailored to the PD Process needs</u> and not self-referential. When the IT support is not tailored to the needs, it becomes the digital noose for the Company.

It is extremely dangerous to underestimate the <u>importance</u> - in one way or another – of how much IT can affect the global efficiency of the Product Development Process.

Similar to IT: it can be a breakthrough for the Company or like an anvil for who is trying to swim....

4. Quality Prcedures

- "Traditional" ISO 9001 approach: we need the certification!
 We start writing some procedures, we adapt to them in some way our processes and we got the certification. This approach does not add any value to the Company.
- The approach to ISO 9001 should be reversed:
 - 1. the processes must be identified and described;
 - 2. they must be reviewed, improved and optimized according to the ISO 9001 basic principles;
 - 3. each process must be evaluated from the economical point of view;
 - 4. each process after its optimization must be described by a procedure (and the procedures must be written by the process owners).

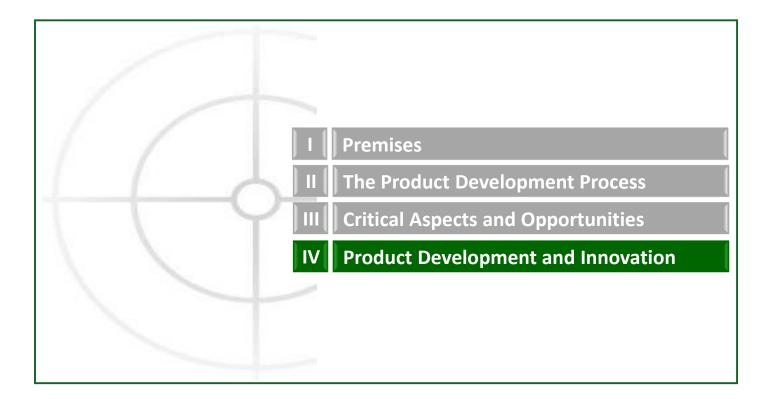
Only at the end of that the certification process can start!

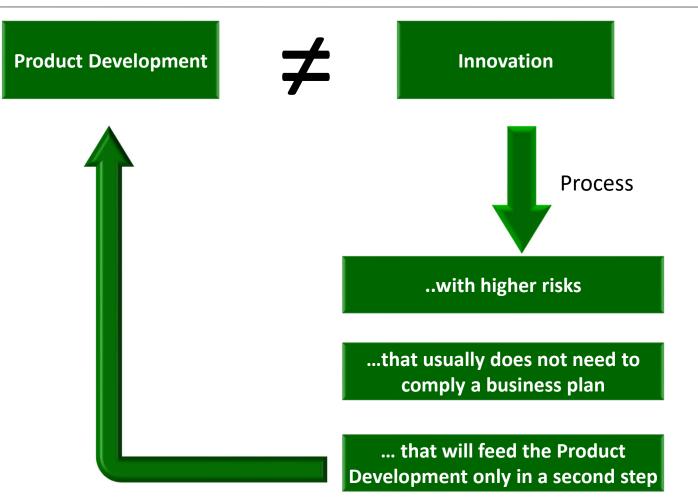
In the Company the processes are complex and if you wish to control them, you always need to try describe their status with indicators that can be measured with numbers (or, even better, with traffic light indicators).

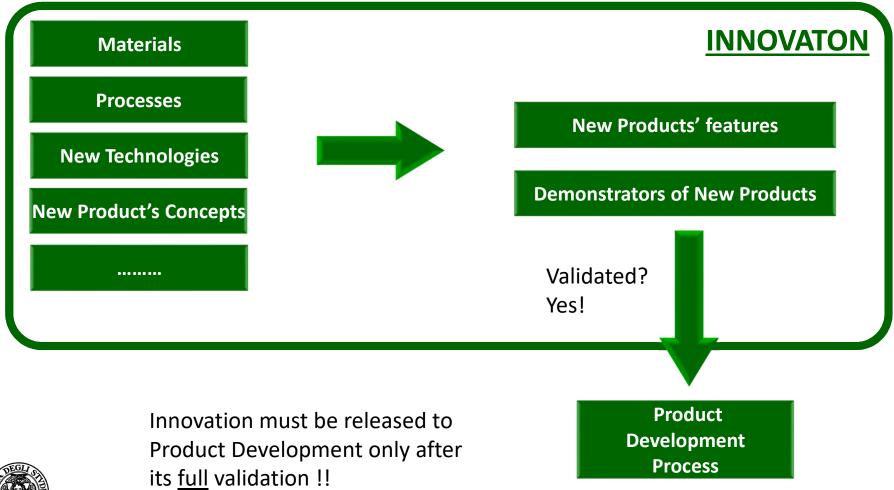
5. The Indicators (KPI)

- The indicators are often called KPIs (Key Point Indicators).
- If it quite easy to identify KPIs for:
 - Manufacturing (e.g. efficiency, daily volumes);
 - Quality (e.g. internal/external scraps,....);
 - Finance (e.g. cash flow, EBITDA,....);
 - Purchasing (e.g. average discount levels,....);

but for the R&D processes it is a little bit more complex. But not impossible.


- GGP R&D KPIs are the deviation vs. the targets of:
 - Timings;
 - Product costs;
 - Product development costs (investments)


- 1. An accurate management of these aspects is crucial for the survival of the Company.
- 2. No one of them should be left unmanaged. They all are relevant, more or less at the same level.
- 3. They all involve not only one department, but all the departments of the Company. This will make even tougher an accurate management of them.
- 4. If you manage all these aspects in a proper way, you will be able to make things completely impossible when the aspects are not managed.


Summary

Negative experiences

- High by-pass turbofan for civil airliners
- 166-270 kN of thrust.
- 1st three spool jet engine in the history
- Potential of 50 years of development

Mid 1966	Start of the activities. Target: certification by December 1970; 147,9 kN of thrust; engine price: 511 k\$
June 1967	Product configuration: high by-pass ratio, triple spoon design, Hyfil (carbon fibre) fan stage. SOP target: 1971.
March 1968	Lockheed order 150 sets of RB.211-22 engines for its L-1011 Tristar with a target of 181 kN of thrust.
May 1970	The Hyfil blade fails the tests. With the titanium blade, the engine is underperforming.
September 1970	Development cost arrived at the double of what initially estimated. Product cost above the target.
January 1971	Rolls Royce become insolvent.
February 1971	"Emergency team" appointed
April 1972	Engine certification.

- Long haul, mid size wide body airliner
- 335 MAX passengers. MTOW: 254 t

 - Range 14,200 km.
 - Full composite fuselage and wings.

January 2003	7E7 Project Launch
April 2004	ANA orders 50 airplanes with enter into service in 2010, price estimated in 120 M\$.
August 2007	Planned date for the 1 st flight
December 2009	Achieved date for the 1 st flight (!!!)
August 2011	FAA/EASA certification (lasted twice what initially predicted).
October 2011	1 st commercial flight

January 2013 Airplanes grounded for battery problems!!

Development costs: 32 bn\$

Airplane cost: ?? (Boeing declared to loose about 30 M\$ per airplane in 2015!!)

BOEIN

- 1. Keep Innovation separate from New Product Development.
- 2. Be sure to have fully validated the Innovation Concept before move to Product Development.
- **3.** Remember that Innovation can fail. If Innovation never fails, maybe it is not real innovation.

Many thanks

Many thanks!

