PROGETTAZIONE ASSISTITA DELLE STRUTTURE MECCANICHE I

Docente: Leonardo BERTINI

FINALITÀ DEL CORSO

Il corso di propone di far acquisire all'allievo competenze nei seguenti settori principali:

- Principi di base e potenzialità del Metodo degli Elementi Finiti (MEF) in campo strutturale lineare
- Uso critico del MEF per la rappresentazione del comportamento di strutture e componenti meccanici in campo lineare

Alla fine del corso l'allievo deve aver acquisito autonomia nell'uso critico delle suddette tecniche informatiche nell'ambito di processi di sviluppo del prodotto.

OBIETTIVI DEL CORSO

Alla fine del corso l'allievo deve aver acquisito le seguenti capacità operative:

- Saper definire completamente (tipi di elemento, estensione del modello, vincoli, schematizzazione dei carichi, etc.) il modello ad EF adatto per l'analisi di strutture e componenti meccanici in campo statico lineare.
- Saper individuare correttamente i limiti del modello in rapporto al problema reale (Es. le grandezze che il modello può valutare correttamente e quelle che non può valutare correttamente)
- Saper organizzare la rappresentazione di un pezzo meccanico attraverso gli strumenti di modellazione solida in dotazione ai programmi ad EF
- Saper esporre criticamente ed in forma corretta e scorrevole il funzionamento dei principali algoritmi e procedure di soluzione illustrati durante il corso.

METODOLOGIA

- Lezioni in aula, talora con dimostrazioni sull'applicazione e sull'uso di programmi (ANSYS)
- Esercitazioni in laboratorio informatico, con uso diretto di programmi (ANSYS)

PRE-REQUISITI

Dai corsi di Matematica:

Sistemi di equazioni lineari. Algebra delle matrici. Sviluppi in serie di Fourier.

Dal corso di Tecnica delle Costruzioni Meccaniche

Stati di tensione e deformazione. Capacità di schematizzare un componente e/o una struttura facendo uso dei diversi modelli semplificati di comportamento strutturale (travi, piastre, gusci, etc.)

Dal corso di Elementi Costruttivi delle Macchine

Principi di funzionamento di componenti ed organi meccanici. Metodologie di schematizzazione di strutture ed elementi di macchine e relativi modelli di calcolo.

COMPETENZE MINIME RICHIESTE PER IL SUPERAMENTO DELL'ESAME

- Saper definire (tipi di elemento, estensione del modello, vincoli, schematizzazione dei carichi, etc.) il modello ad EF adatto per l'analisi di strutture e componenti meccanici, in campo statico lineare.
- Saper individuare i principali limiti del modello in rapporto al problema reale.
- Saper esporre criticamente il funzionamento dei principali algoritmi e procedure di soluzione illustrati durante il corso.

MODALITÀ DI VERIFICA

L' esame è costituito da una prova orale, che verte su domande a carattere principalmente applicativo (Es. definizione di modelli per l'analisi di semplici sistemi meccanici).

CONTENUTI E ARTICOLAZIONE TEMPORALE

- METODO DEGLI ELEMENTI FINITI: Introduzione e principi base. Organizzazione di un modello ad EF. Discretizzazione di un continuo. Gradi di libertà. (LEZ: 2)
- ANALISI DEL SINGOLO ELEMENTO: Gradi di libertà dell'elemento. Matrice di rigidezza dell'elemento. Sua valutazione in base al Principio dei Lavori Virtuali. (LEZ: 4)
- ANALISI DELLA STRUTTURA: Gradi di libertà della struttura. Assemblaggio della relativa matrice di rigidezza. Rappresentazione di vincoli e carichi. Tecniche per l'inversione della matrice di rigidezza. (LEZ: 4)
- ANALISI DEI RISULTATI: Tecniche di media e stima delle tensioni. Criteri di convergenza del MEF. (LEZ: 2).
- ANALISI DEI PRINCIPALI ELEMENTI: Analisi dei principali tipi di elemento (asta, trave, guscio, piani, "brick", etc.). Principi di funzionamento. Rappresentazione dello stato di tensione ottenibile. Definizione in un programma EF. Esempi di applicazione (LEZ: 9)
- TECNICHE DI MODELLAZIONE: Pianificazione di un'analisi ad EF. Progetto del modello. Approssimazioni ed ipotesi semplificative. Rappresentazione di vincoli e carichi. Trattamento delle singolarità. Utilizzo delle simmetrie (LEZ: 4)
- STIME DI ERRORE: Tecniche per la stima dell'errore in un modello ad EF.
 Convergenza di tipo "h" e di tipo "p". Tasso di convergenza della soluzione (LEZ: 5)
- ORGANIZZAZIONE DI UN MODELLO AD EF: Modalità di definizione di un modello all'interno di un programma ad EF. Grandezze da definire. Procedura per l'esecuzione di un'analisi (programma ANSYS).
- COMANDI PER LA DEFINIZIONE DEL MODELLO: Principali comandi da utilizzare per la definizione di un modello. Modellazione diretta. Modellazione solida (approcci "top-down" e "bottom-up"). Esecuzione del calcolo. Analisi dei risultati. (programma ANSYS).
- ANALISI CON IL METODO DEGLI EF: Conduzione diretta da parte degli allievi di analisi ad EF su diversi esempi applicativi (Es.: lastra piana intagliata, corpo 3D, etc.). (programma ANSYS).

Totale ore di lezione: 30
Totale ore di esercitazione: 20

TESTI DI RIFERIMENTO

Appunti dalle lezioni. Manuali di ANSYS. Lucidi lezioni ed esercitazioni.

