CORSO DI LAUREA SPECIALISTICA IN ING. MECCANICA INSEGNAMENTO DI PROGETTAZIONE ASSISTITA DA COMPUTER II APPELLO DEL 12-01-2010

ALLIEVO	MATRICOLA	

QUESITO 1

ANALISI TRANSITORIO

Data la diga per applicazioni idroelettriche mostrata in Figura 1, si vogliono calcolare le sollecitazioni prodotte da un'onda anomala avente fronte rettilineo, che investa contemporaneamente l'intera larghezza della struttura.

È dato (Figura 2) l'andamento nel tempo della forza esercitata dall'onda sulla struttura stessa.

Si indichi in modo chiaro e conciso la procedura (eventualmente organizzata in "step") per lo studio della risposta dinamica della struttura con il metodo della sovrapposizione modale (si precisa che non è richiesto di illustrare lo sviluppo teorico del metodo di calcolo, ma la sua applicazione al caso specifico), indicando anche come si intende fissare i parametri dell'analisi (es. il numero di forme modali da impiegare).

Il modello della struttura da impiegare è basato su elementi piani (vedi Figura 3).

Si indichi, infine, sotto quali ipotesi è possibile studiare la risposta di transitorio della struttura con il metodo indicato.

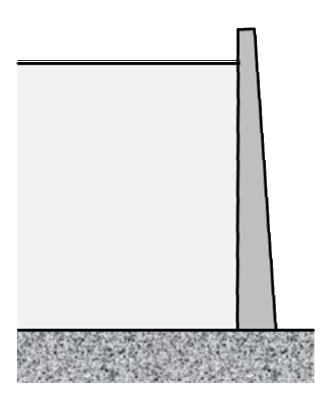


Figura 1 – Schema della struttura "off-shore" per perforazioni petrolifere.

Forza applicata t

Figura 2– Andamento qualitativo della forza applicata dall'onda alla diga

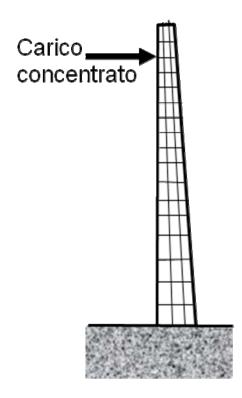


Figura 3 – Schema del modello EF della struttura "off-shore".

Risposta al Quesito 1

Risposta al Quesito 1 (continua)

QUESITO 2

ANALISI NON LINEARE

Si descriva le possibili differenze nel trattamento di problemi non lineari di tipo conservativo e non conservativo, indicando per ciascuna delle due categorie almeno un esempio.

Risposta al Quesito 2 (continua)

QUESITO 3

MATERIALI COMPOSITI

È data la lastra in materiale composito mostrata nella Figura 4, caricata nel suo piano.

La lastra ha una stratificazione "quasi isotropa" del tipo:

[0°/+45°/-45°/90°]_S

Volendo costruirne un modello con elementi "shell-stratificati", quali piani/assi di simmetria è possibile utilizzare?

Si disegni uno schema del modello EF costruito sulla base delle condizioni di simmetria individuate, indicando anche le condizioni da applicare sulle componenti di spostamento.

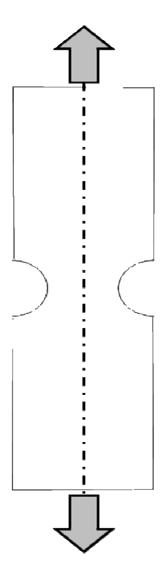


Figura 4 – Lastra in materiale composito laminato

Risposta al Quesito 3 (continua)

Per quale ragione fisica le pulsazioni proprie meno accurate all'aumentare del loro "ordine"	n modello ad EF	risultano progres	ssivamente