
1

Processes

� Process Concept

� Operations on Processes

� Process Scheduling

Based on original slides by

Silberschatz, Galvin and Gagne

2

Process Concept

� An operating system executes a variety of programs:

� Batch system – jobs

� Time-shared systems – user programs or tasks

� System activities

� Textbook uses the terms job and process almost

interchangeably.

� Process – a program in execution;

� Program is a passive entity (file on disk storage)

� Process is an active entity

� More processes can refer to the same program

3

Process Concept (2)

� A process includes

� Code section

� Current activity

� Current activity is defined by

� Program Counter (IP Register)

� CPU Registers

� Stack

� Data Section (global variables)

� …

Two instances of the same program (e.g., MS Word) have the same

code section but, in general, different current activities

4

Process Creation

� Processes need to be created

� Processes are created by other processes

� System call create_process

� Parent process create children processes

� which, in turn create other processes, forming a tree of processes.

� Resource sharing

� Parent and children share all resources.

� Children share subset of parent’s resources.

� Parent and child share no resources.

� Execution

� Parent and children execute concurrently.

� Parent waits until children terminate.

5

Process Creation (Cont.)

� Address space

� Child duplicate of parent.

� Child has a program loaded into it.

� UNIX examples

� Each process is identified by the process identifier

� fork system call creates new process

� exec system call used after a fork to replace the process’ memory

space with a new program.

6

Process Creation in UNIX

include <iostream.h>

void main(int argc, char* argv[]) {

int pid;

pid=fork(); /* genera un nuovo processo */

if(pid<0) { /* errore */

cout << “Errore nella creazione del processo” << "\n\n”;

exit(-1);

}

else if(pid==0) { /* processo figlio */

execlp(“/bin/ls”, “ls”, NULL);

}

else { /* processo genitore */

wait(NULL);

cout << “Il processo figlio ha terminato” << "\n\n”;

exit(0);

}

}

7

Process Termination

� Process terminates when executing the last statement

� The last statement is usually exit

� Process’ resources are deallocated by operating system.

� Parent may terminate execution of children processes

(abort).

� Child has exceeded allocated resources.

� Task assigned to child is no longer required.

� Parent is exiting.

�Operating system does not allow child to continue if its parent

terminates.

�Cascading termination.

8

Process Evolution

� As a process executes, it changes state

� new: The process is being created.

� running: Instructions are being executed.

� waiting: The process is waiting for some event to occur.

� ready: The process is waiting to be assigned to the CPU.

� terminated: The process has finished execution.

9

Diagram of Process State

10

Process Control Block (PCB)

Information associated with each process.

� Process state

� Program counter

� CPU registers

� CPU scheduling information

� Memory-management information

� Accounting information

� I/O status information

11

Process Control Block (PCB)

12

CPU Switch From Process to Process

13

Context Switch

� When CPU switches to another process, the system must

save the state of the old process and load the saved state

for the new process.

� Context-switch time is overhead

� the system does no useful work while switching.

14

Process Scheduling Queues

� Ready queue

� set of all processes residing in main memory

� ready and waiting to execute

� Device queues

� set of processes waiting for an I/O device

� A different queue for each device

� Job queue

� set of all processes in the system

Processes migrate between the various queues

15

Ready Queue And Various I/O Device Queues

16

Schedulers

� Short-term scheduler (or CPU scheduler)

� selects which process should be executed next and allocates

CPU.

� Long-term scheduler (or job scheduler)

� selects which processes should be brought into the ready queue.

17

Addition of Medium Term Scheduling

18

Schedulers (Cont.)

� Short-term scheduler is invoked very frequently

� milliseconds ⇒ must be fast

� Long-term scheduler is invoked very infrequently

� seconds, minutes ⇒ may be slow

� The long-term scheduler controls the degree of

multiprogramming.

� Processes can be described as either:

� I/O-bound process

� spends more time doing I/O than computations, many short CPU

bursts.

� CPU-bound process

� spends more time doing computations; few very long CPU bursts.

