
1

1CPU Scheduling

CPU Scheduling

� Basic Concepts

� Scheduling Criteria

� Scheduling Algorithms

� Batch systems

� Interactive systems

Based on original slides by

Silberschatz, Galvin and Gagne

2CPU Scheduling

Basic Concepts

� CPU–I/O Burst Cycle

� Process execution consists of a

cycle of CPU execution and I/O

wait.

� CPU-Bound Processes

� I/O-Bound Processes

3CPU Scheduling

Basic Concepts (2)

� Maximum CPU utilization obtained with multiprogramming

� Different part of the systems can be active simultaneously allowing

parallel execution of processes

� The scheduling algorithm should mix appropriately CPU-bound and

I/O-Bound Processes

2

4CPU Scheduling

CPU Scheduler

� Selects from among the processes in memory that are

ready to execute, and allocates the CPU to one of them.

� CPU scheduling decisions may take place in different

situations

� Non-preemptive scheduling

� The running process terminates

� The running process performs an I/O operation or waits for an event

� Preemptive scheduling

� The running process has exhausted its time slice

� A process A transits from blocked to ready and is considered more

important than process B that is currently running

� …

5CPU Scheduling

Dispatcher

� Dispatcher module gives control of the CPU to the process

selected by the short-term scheduler; this involves:

� Context Switch

� Switching to user mode

� Jumping to the proper location in the user program to restart that

program

� Dispatch latency

� time it takes for the dispatcher to stop one process and start another

running.

� Context-switches should be minimized

6CPU Scheduling

Type of scheduling

� Batch Systems

� Maximize the resource utilization

� Interactive Systems

� Minimize response times

� Real-Time Systems

� Meet Temporal Constraints

3

7CPU Scheduling

Objectives

� General
� Fairness

� Load Balancing

� Batch Systems
� CPU utilization (% of time the CPU is executing processes)

� Throughput (# of processes executed per time unit)

� Turnaround time (amount of time to execute a particular process)

� Interactive Systems
� Response time

� amount of time it takes from when a request was submitted until the
first response is produced, not output

� Real-Time Systems
� Temporal Constraints

� Avoid data loss

� Avoid Quality of Service (QoS) degradation

8CPU Scheduling

Scheduling for Batch Systems

� FCFS

� Firs-Come First-Served

� SJF

� Shortest Job First

� SRJF

� Shortest Remaining Job First

9CPU Scheduling

First-Come, First-Served (FCFS)

Process Burst Time

P1 24

P2 3

P3 3

� Suppose that the processes arrive in the order: P1 , P2 , P3

� Waiting time for P1 = 0; P2 = 24; P3 = 27

� Average waiting time: (0 + 24 + 27)/3 = 17

P
1

P
2

P
3

24 27 300

4

10CPU Scheduling

FCFS (Cont.)

Suppose that the processes arrive in the order

P2 , P3 , P1 .

� Waiting time for P1 = 6; P2 = 0; P3 = 3

� Average waiting time: (6 + 0 + 3)/3 = 3

� Much better than previous case.

� Convoy effect short process behind long process

P
1

P
3

P
2

63 300

11CPU Scheduling

Shortest-Job-First (SJR)

� Associate with each process the length of its next CPU

burst. Use these lengths to schedule the process with the

shortest time.

� Two schemes:

� Non-preemptive

� once CPU given to the process it cannot be preempted until completes

its CPU burst.

� Preemptive (Shortest-Remaining-Time-First or SRTF).

� if a new process arrives with CPU burst length less than remaining time

of current executing process, preempt. This scheme is know as the

� SJF is optimal

� gives minimum average waiting time for a given set of processes

that are simultaneously available.

12CPU Scheduling

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

� SJF (non-preemptive)

� Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Non-Preemptive SJF

P
1

P
3

P
2

73 160

P
4

8 12

5

13CPU Scheduling

Example of Preemptive SJF (SRJF)

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

� SJF (preemptive)

� Average waiting time = (9 + 1 + 0 +2)/4 = 3

P
1

P
3

P
2

42 110

P
4

5 7

P
2

P
1

16

14CPU Scheduling

Scheduling for Interactive Systems

� Round-Robin (RR)

� Priority-based

� Shortest Process Next

� Approximated SJF

� Multi-level

15CPU Scheduling

Round Robin (RR)

� Each process gets a small unit of CPU time (time quantum).

� After this time has elapsed, the process is preempted and added to

the end of the ready queue.

� n processes in the ready queue; time quantum = q

� Each process gets 1/n of the CPU time in chunks of at most q time

units at once.

� No process waits more than (n-1)q time units.

� Performance

� q large ⇒ FIFO

� q small ⇒ q must be large with respect to context switch, otherwise

overhead is too high.

6

16CPU Scheduling

Example of RR with Time Quantum = 20

Process Burst Time

P1 53

P2 17

P3 68

P4 24

P
1

P
2

P
3

P
4

P
1

P
3

P
4

P
1

P
3

P
3

0 20 37 57 77 97 117 121 134 154 162

17CPU Scheduling

Time Quantum and Perfomance

� Time quantum impacts on
� Number of Context Switches

� Average Response Time

� RR is fair by definition
� All processes are given the same chances

18CPU Scheduling

Priority Scheduling

� A priority number (integer) is associated with each process

� Static vs. Dynamic Priority

� The CPU is allocated to the process with the highest priority

(smallest integer ≡ highest priority).

� Preemptive vs.Non-preemptive

� SJF (SRJF) is a priority scheduling where priority is the

predicted (remaining) CPU burst time.

� Problem

� Starvation – low priority processes may never execute.

� Solution

� Aging – as time progresses increase the priority of the process.

� Classes of priority

7

19CPU Scheduling

Real-Time Scheduling

� Soft real-time computing – requires that critical processes

receive priority over less fortunate ones.

� Hard real-time systems – required to complete a critical task

within a guaranteed amount of time.

� Rate Monotonic

� Earliest Deadline First

20CPU Scheduling

Rate Monotonic Scheduling

� A priority is assigned based on the inverse of its

period

� Shorter periods = higher priority;

� Longer periods = lower priority

� P1 (T=50 ms), P2 (T=100 ms)

� P1 assigned a higher priority than P2.

21CPU Scheduling

Earliest Deadline First Scheduling

� Priorities are assigned according to deadlines:

� the earlier the deadline, the higher the priority;

� the later the deadline, the lower the priority

P1: p=50 ms, t=25 ms t/p=0.50

P2: p=80 ms t=35 ms t/p=0.44

8

22CPU Scheduling

Multilevel Queue

� Ready queue is partitioned into separate queues:

� foreground (interactive)

� background (batch)

� Each queue has its own scheduling algorithm

� foreground – RR

� background – FCFS

� Scheduling must be done between the queues.

� Fixed priority scheduling

� i.e., serve all from foreground then from background

� Possibility of starvation.

� Time slice

� each queue gets a certain amount of CPU time which it can schedule

amongst its processes

� Example: 80% to foreground in RR; 20% to background in FCFS

23CPU Scheduling

Multilevel Queue Scheduling

24CPU Scheduling

Multilevel Feedback Queue

� A process can move between the various queues; aging

can be implemented this way.

� Multilevel-feedback-queue scheduler defined by the

following parameters:

� number of queues

� scheduling algorithms for each queue

� method used to determine when to upgrade a process

� method used to determine when to demote a process

9

25CPU Scheduling

Example of Multilevel Feedback Queue

� Three queues:

� Q0 – time quantum 8 ms

� Q1 – time quantum 16 ms

� Q2 – FCFS

� Scheduling

� A new job enters queue Q0 which is served FCFS.

� When it gains CPU, job receives 8 milliseconds.

� If it does not finish in 8 milliseconds, job is moved to queue Q1.

� At Q1 job is again served FCFS and receives 16 additional

milliseconds.

� If it still does not complete, it is preempted and moved to queue Q2.

26CPU Scheduling

Operating System Examples

� Windows XP scheduling

� Linux scheduling

27CPU Scheduling

Windows XP Scheduling

� Thread scheduling based on
� Priority

� Preemption

� Time slice

� A thread is execute until one of the following event occurs
� The thread has terminated its execution

� The thread has exhausted its assigned time slice

� The has executed a blocking system call

� A thread higher-priority thread has entered the ready queue

10

28CPU Scheduling

Kernel Priorities

� Kernel priority scheme: 32 priority levels

� Real-time class (16-31)

� Variable class (1-15)

� Memory management thread (0)

� A different queue for each priority level

� Queues are scanned from higher levels to lower levels

� When no thread is found a special thread (idle thread) is executed

29CPU Scheduling

Win32 API priorities

� API Priority classes
� REALTIME_PRIORITY_CLASS � Real-time Class

� HIGH_PRIORITY_CLASS � Variable Class

� ABOVE_NORMAL_PRIORITY_CLASS � Variable Class

� NORMAL_PRIORITY_CLASS � Variable Class

� BELOW_NORMAL_PRIORITY_CLASS � Variable Class

� IDLE_PRIORITY_CLASS � Variable Class

� Relative Priority
� TIME_CRITICAL

� HIGHEST

� ABOVE_NORMAL

� NORMAL

� BELOW_NORMAL

� LOWEST

� IDLE

30CPU Scheduling

Windows XP Priorities

Default Base Priority

11

31CPU Scheduling

Class Priority Management

� A thread is stopped as soon as its time slice is exhausted

� Variable Class
� If a thread stops because time slice is exhausted, its priority level

is decreased

� If a thread exits a waiting operation, its priority level is increased

� waiting for data from keyboard, mouse � significant increase

� Waiting for disk operations � moderate increase

� Background/Foreground processes
� The time slice of the foreground process is increased (typically by

a factor 3)

32CPU Scheduling

Linux Scheduling

� Task scheduling based on

� Priority levels

� Preemption

� Time slices

� Two priority ranges: real-time and time-sharing

� Real-time range from 0 to 99

� Nice range from 100 to 140

� The time-slice length depends on the priority level

33CPU Scheduling

Priorities and Time-slice length

12

34CPU Scheduling

RunQueue

� The runqueue consists of two different arrays

� Active array

� Expired array

35CPU Scheduling

Priority Calculation

� Real time tasks have static priority

� Time-sharing tasks have dynamic priority

� Based on nice value + 5

� + 5 depends on how much the task is interactive

� Tasks with low waiting times are assumed to be scarcely interactive

� Tasks with large waiting times are assumed to be highly interactive

� Priority re-computation is carried out every time a task

has exhausted its time slice

36CPU Scheduling

Questions?

