CPU Scheduling

m Basic Concepts
m Scheduling Criteria
m Scheduling Algorithms

Batch systems
Interactive systems

Based on original slides by
Silberschatz, Galvin and Gagne

CPU Scheduling 1

Basic Concepts

lw«dst‘orr
m CPU-I/O Burst Cycle o e

Process execution consists of a

GPU burst

CPU Scheduling

cycle of CPU execution and I/0
wait.

CPU-Bound Processes
1/0-Bound Processes

10 burst

store increment

index CPU burst

write (0 file

load store
add store.
read from file

10 burst

CPU burst

10 burst

[S WD W S N

Basic Concepts (2)

® Maximum CPU utilization obtained with multiprogramming

Different part of the systems can be active simultaneously allowing
parallel execution of processes

The scheduling algorithm should mix appropriately CPU-bound and
1/0O-Bound Processes

CPU Scheduling 3

CPU Scheduler

m Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.

m CPU scheduling decisions may take place in different
situations
Non-preemptive scheduling
The running process terminates
The running process performs an /O operation or waits for an event

Preemptive scheduling
The running process has exhausted its time slice

A process A transits from blocked to ready and is considered more
important than process B that is currently running

CPU Scheduling 4

Dispatcher

m Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

Context Switch
Switching to user mode
Jumping to the proper location in the user program to restart that
program

B Dispatch latency
time it takes for the dispatcher to stop one process and start another
running.

m Context-switches should be minimized

CPU Scheduling 5

Type of scheduling

m Batch Systems

Maximize the resource utilization
| |nteractive Systems

Minimize response times
m Real-Time Systems

Meet Temporal Constraints

CPU Scheduling 6

Objectives

m General
Fairness
Load Balancing

m Batch Systems
CPU utilization (% of time the CPU is executing processes)
Throughput (# of processes executed per time unit)
Turnaround time (amount of time to execute a particular process)

| |nteractive Systems
Response time
amount of time it takes from when a request was submitted until the
first response is produced, not output
m Real-Time Systems
Temporal Constraints
Avoid data loss
Avoid Quality of Service (QoS) degradation

CPU Scheduling 7

Scheduling for Batch Systems

m FCFS

Firs-Come First-Served

m SJF
Shortest Job First

m SRJF
Shortest Remaining Job First

CPU Scheduling 8

First-Come, First-Served (FCFS)

Process Burst Time

P, 24
P, 3
P3

® Suppose that the processes arrive in the order: P, , P, , P,

P, P, P,

0 24 27 30

m Waiting time for P, =0; P, = 24; P;=27
m Average waiting time: (0 + 24 + 27)/3 =17

CPU Scheduling 9

FCFS (Cont.)

Suppose that the processes arrive in the order
P,,P;,P;.

P, Py Py

0 3 30
B Waiting time for P, =6,P,=0.P;=3

W Average waiting time: (6+0+ 3)/3=3

® Much better than previous case.

B Convoy effect short process behind long process

CPU Scheduling 10

Shortest-Job-First (SJR)

B Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

B Two schemes:
Non-preemptive

once CPU given to the process it cannot be preempted until completes
its CPU burst.

Preemptive (Shortest-Remaining-Time-First or SRTF).
if a new process arrives with CPU burst length less than remaining time
of current executing process, preempt. This scheme is know as the
m SJF is optimal

gives minimum average waiting time for a given set of processes

that are simultaneously available.
CPU Scheduing B

Example of Non-Preemptive SJF

Process Arrival Time Burst Time

P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4
m SJF (non-preemptive)
P, Py P, P,
1+ 1
0 3 7 12 16

B Average waitingtime=(0+6 +3 +7)/4=4

CPU Scheduling 12

Example of Preemptive SJF (SRJF)

Process Arrival Time Burst Time

P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4
m SJF (preemptive)
P, | PPy | P, P, P,
1 1 I R B B
0 4 5 7 1 16

m Average waiting time = (9+ 1+ 0 +2)/4 =3

CPU Scheduling 13

Scheduling for Interactive Systems

® Round-Robin (RR)

m Priority-based

m Shortest Process Next
Approximated SJF

m Multi-level

CPU Scheduling 14

Round Robin (RR)

m Each process gets a small unit of CPU time (time quantum).

After this time has elapsed, the process is preempted and added to
the end of the ready queue.

B n processes in the ready queue; time quantum = g

Each process gets 1/n of the CPU time in chunks of at most q time
units at once.

No process waits more than (n-1)q time units.

m Performance
qlarge = FIFO

g small = g must be large with respect to context switch, otherwise
overhead is too high.

CPU Scheduling 15

Example of RR with Time Quantum = 20

Process Burst Time

P, 53
P, 17
P, 68
P, 24
‘P‘ Py | Py | Py | Py | Py | P | P | P[Py

0 20 37 57 77 97 117 121 134 154 162

CPU Scheduling

Time Quantum and Perfomance

pracess time = 10 quantum context
switches

e— e

m Time quantum impacts on
Number of Context Switches
Average Response Time

m RRis fair by definition
All processes are given the same chances

CPU Scheduling

17

Priority Scheduling

m A priority number (integer) is associated with each process
Static vs. Dynamic Priority
m The CPU is allocated to the process with the highest priority
(smallest integer = highest priority).
Preemptive vs.Non-preemptive
m SJF (SRJF) is a priority scheduling where priority is the
predicted (remaining) CPU burst time.
m Problem
Starvation — low priority processes may never execute.
| Solution
Aging — as time progresses increase the priority of the process.
m Classes of priority

CPU Scheduling

Real-Time Scheduling

m Soft real-time computing — requires that critical processes
receive priority over less fortunate ones.

B Hard real-time systems — required to complete a critical task
within a guaranteed amount of time.
Rate Monotonic
Earliest Deadline First

CPU Scheduling 19

Rate Monotonic Scheduling

| A priority is assigned based on the inverse of its
period

m Shorter periods = higher priority;

B |onger periods = lower priority

m P, (T=50 ms), P, (T=100 ms)

m P, assigned a higher priority than P,.

Deadlines P PPy Py PPy
‘ R | 1P2\ | Ri |P2‘ - | Ri | |P2| | Ri ‘P2|]
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

CPU Scheduling 20

Earliest Deadline First Scheduling

B Priorities are assigned according to deadlines:
the earlier the deadline, the higher the priority;
the later the deadline, the lower the priority

P1: p=50 ms, t=25 ms t/p=0.50
P2: p=80 ms t=35ms t/p=0.44
Deadlines Py Py Py Py Py
! | | Vo
‘ | ‘ I 2 ‘ T ‘ P2 ‘ P ‘ EEN ‘ |

O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

CPU Scheduling 21

Multilevel Queue

m Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

m Each queue has its own scheduling algorithm
foreground — RR
background — FCFS

m Scheduling must be done between the queues.
Fixed priority scheduling

i.e., serve all from foreground then from background
Possibility of starvation.

Time slice

CPU Scheduling

each queue gets a certain amount of CPU time which it can schedule
amongst its processes
Example: 80% to foreground in RR; 20% to background in FCFS

22

CPU Scheduling

Multilevel Queue Scheduling

|highest priority
|]]
||
———p] interaciive editing processes [
j»(batch processes '3»
j{ student processes. '1»
Lowest priorty

CPU Scheduling

Multilevel Feedback Queue

m A process can move between the various queues; aging
can be implemented this way.

m Multilevel-feedback-queue scheduler defined by the
following parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process
method used to determine when to demote a process

Example of Multilevel Feedback Queue

B Three queues: M
Q, — time quantum 8 ms

Q, —time quantum 16 ms
QZ —FCFS quantum = 16

)
L’{ FCFS '
B Scheduling

A new job enters queue Q, which is served FCFS.
When it gains CPU, job receives 8 milliseconds.
If it does not finish in 8 milliseconds, job is moved to queue Q,.

At Q, job is again served FCFS and receives 16 additional
milliseconds.

If it still does not complete, it is preempted and moved to queue Q,.

Al

CPU Scheduling 2

Operating System Examples

m Windows XP scheduling
B Linux scheduling

CPU Scheduling 2

Windows XP Scheduling

B Thread scheduling based on
Priority
Preemption
Time slice
m A thread is execute until one of the following event occurs
The thread has terminated its execution
The thread has exhausted its assigned time slice
The has executed a blocking system call
A thread higher-priority thread has entered the ready queue

CPU Scheduling 27

Kernel Priorities

m Kernel priority scheme: 32 priority levels
Real-time class (16-31)
Variable class (1-15)
Memory management thread (0)

m A different queue for each priority level
Queues are scanned from higher levels to lower levels
When no thread is found a special thread (idle thread) is executed

CPU Scheduling 28

Win32 API priorities

m API Priority classes

REALTIME_PRIORITY_CLASS - Real-time Class
HIGH_PRIORITY_CLASS - Variable Class
ABOVE_NORMAL_PRIORITY_CLASS - Variable Class
NORMAL_PRIORITY_CLASS - Variable Class
BELOW_NORMAL_PRIORITY_CLASS -> Variable Class
IDLE_PRIORITY_CLASS - Variable Class

m Relative Priority
TIME_CRITICAL
HIGHEST
ABOVE_NORMAL
NORMAL
BELOW_NORMAL
LOWEST
IDLE

CPU Scheduling 2

Windows XP Priorities

e | "0 | nommal | ™ol | rerma | prcty

time-critical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 " 9 7 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 i 1

Default Base Priority

CPU Scheduling 30

Class Priority Management
m Athread is stopped as soon as its time slice is exhausted

m Variable Class
If a thread stops because time slice is exhausted, its priority level
is decreased
If a thread exits a waiting operation, its priority level is increased
waiting for data from keyboard, mouse - significant increase
Waiting for disk operations - moderate increase

m Background/Foreground processes
The time slice of the foreground process is increased (typically by
a factor 3)

CPU Scheduling 31

Linux Scheduling

B Task scheduling based on
Priority levels
Preemption
Time slices

m Two priority ranges: real-time and time-sharing
Real-time range from 0 to 99

Nice range from 100 to 140

m The time-slice length depends on the priority level

CPU Scheduling £

Priorities and Time-slice length

numeric relative time
priority priority quantum
0 highest 200 ms
° real-time
: tasks
99
100
: other
. tasks
140 lowest 10 ms

CPU Scheduling 33

11

RunQueue

® The runqueue consists of two different arrays

Active array
Expired array

active expired
array array
priority task lists priority task lists
[0] 0—0 [0] 0—0—0
[1] 0—0—-0 [1] o
[140] [[140] o—0O

CPU Scheduling

Priority Calculation

m Real time tasks have static priority

B Time-sharing tasks have dynamic priority

Based on nice value + 5

+ 5 depends on how much the task is interactive
Tasks with low waiting times are assumed to be scarcely interactive
Tasks with large waiting times are assumed to be highly interactive

m Priority re-computation is carried out every time a task
has exhausted its time slice

CPU Scheduling

Questions?

CPU Scheduling

12

