
1

1

Cooperating Processes

� Introduction
� Shared-Memory
� Inter-Process Communication (IPC)
� Client-Server Paradigm
� Socket-based Communication

Based on original slides by

Silberschatz, Galvin and  Gagne

2

Cooperating Processes (Threads)

� Independent process 
� cannot affect or be affected by the execution of another process.

� Cooperating process 
� can affect or be affected by the execution of another process

� Advantages of process cooperation
� Information sharing 

� Computation speed-up

� Modularity

� Convenience

3

Cooperation

� Cooperating processes need mechanisms for
� Communication

� Synchronization

� Communication between cooperating process can occur 
by means of

� Shared memory

� Message passing



2

4

Producer-Consumer Problem

� Paradigm for cooperating processes
� producer process produces information …
� that is consumed by a consumer process.

5

Cooperating Processes

� Definition
� Shared-Memory
� Inter-Process Communication (IPC)
� Client-Server Paradigm
� Socket-based Communication

6

Producer-Consumer Problem

� Paradigm for cooperating processes
� producer process produces information …
� that is consumed by a consumer process.

� Shared-memory solution
� Shared buffer

�unbounded-buffer places no practical limit on the size of the 
buffer.

�bounded-buffer assumes that there is a fixed buffer size.



3

7

Bounded-Buffer Solution

� Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item ;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

8

Bounded-Buffer Solution 

� Producer process 

item nextProduced;

while (1) {
while (counter == BUFFER_SIZE)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

9

Bounded-Buffer Solution 

� Consumer process

item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}



4

10

Bounded-Buffer Solution

� The statements

counter++;
counter--;

must be performed atomically.

� Atomic operation means an operation that completes in its 
entirety without interruption.

11

Bounded Buffer

� The statement “counter++ ” may be implemented in 
machine language as:

register1 = counter
register1 = register1 + 1
counter = register1

� The statement “counter— ” may be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2

12

Bounded-Buffer Solution

� If both the producer and consumer attempt to update the 
buffer concurrently, the assembly language statements 
may get interleaved.

� Interleaving depends upon how the producer and 
consumer processes are scheduled.



5

13

Bounded-Buffer Solution

� Assume counter is initially 5. One interleaving of statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)

consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)

producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

� The value of count may be either 4 or 6, where the correct result 
should be 5.

14

Race Condition

� Race condition
� The situation where several processes access and manipulate 

shared data concurrently. 
� The final value of the shared data depends upon which process 

finishes last.

� To prevent race conditions, concurrent processes must be 
synchronized .

15

The Critical-Section Problem

� n processes all competing to use some shared data

� Each process has a code segment, called critical 
section, in which the shared data is accessed.

� Problem – ensure that when one process is executing 
in its critical section, no other process is allowed to 
execute in its critical section.



6

16

Solution to Critical-Section Problem

1. Mutual Exclusion .  
� If process Pi is executing in its critical section, then no other 

processes can be executing in their critical sections.

2. Progress .  
� If no process is executing in its critical section and there exist 

some processes that wish to enter their critical section, then 
the selection of the processes that will enter the critical section 
next cannot be postponed indefinitely.

3. Bounded Waiting . 
� A bound must exist on the number of times that other 

processes are allowed to enter their critical sections after a 
process has made a request to enter its critical section and 
before that request is granted.

� Assume that each process executes at a nonzero speed 
� No assumption concerning relative speed of the n processes.

17

General Process Structure

� General structure of process Pi (other process Pj)

do {
entry section

critical section
exit section

reminder section
} while (1) ;

� Processes may share some common variables to 
synchronize their actions.

18

Solutions

� Software approaches

� Hardware solutions
� Interrup disabling
� Special machine instructions

� Operating System Support
� Semaphores

� Programming language Support
� Monitor

� …



7

19

A Software Solution

Boolean lock=FALSE; 
Process Pi {

do { 
while (lock); // do nothing
lock=TRUE;

critical section
lock=FALSE; 

remainder section 
} while (TRUE);

}
Does it work? 

20

Algorithm 1

� Shared variables: 
� int turn ;

initially turn = 0
� turn = i ⇒ Pi can enter its critical section

� Process Pi

do {
while (turn != i) ;

critical section
turn = j ;

reminder section
} while (1) ;

� Satisfies mutual exclusion, but not progress

21

Algorithm 2

� Shared variables
� boolean flag[2] ;

initially flag [0] = flag [1] = false.
� flag [i] = true ⇒ Pi ready to enter its critical section

� Process Pi

do {
flag[i] := true;
while (flag[j]) ;
critical section
flag [i] = false;

remainder section

} while (1);

� Satisfies mutual exclusion, but not progress requirement.



8

22

Algorithm 3

� Combined shared variables of algorithms 1 and 2.
� Process Pi

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn = j) ;

critical section
flag [i] = false;

remainder section
} while (1);

� Meets all three requirements; solves the critical-section 
problem for two processes.

23

Bakery Algorithm

� Before entering its critical section, process receives a 
number. Holder of the smallest number enters the 
critical section.

� If processes Pi and Pj receive the same number, if i < j, 
then Pi is served first; else Pj is served first.

� The numbering scheme always generates numbers in 
increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...

Critical section for n processes

24

Bakery Algorithm 

� Notation <≡ lexicographical order (ticket #, process id #)
� (a,b) < c,d) if a < c or if a = c and b < d

� max (a0,…, an-1) is a number, k, such that k ≥ ai for i - 0, 
…, n – 1

� Shared data
boolean choosing[n];
int number[n];

Data structures are initialized to false and 0 respectively



9

25

Bakery Algorithm 

do { 
choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false;
for (j = 0; j < n; j++) {

while (choosing[j]) ; 
while ((number[j] != 0) && (number[j,j] < number[i,i ])) ;

}
critical section

number[i] = 0;
remainder section

} while (1);

26

Solution based on Locks

Process Pi {
do { 

acquire lock
critical section

release lock
remainder section 

} while (TRUE); 
} 

27

Interrupt disabling

� General process structure

do {
<disable interrupt>

critical section
<enable interrupt>

reminder section
} while (1) ;

� Disabling Interrupts for long times may create problems

� Does not work on multiprocessor systems



10

28

Synchronization Hardware

� Test and modify the content of a word atomically
.

boolean TestAndSet(boolean &target) {
boolean rv = target;
tqrget = true;

return rv;
}

29

Mutual Exclusion with Test-and-Set

� Shared data: 
boolean lock = false;

� Process Pi

do {
while (TestAndSet(lock)) ;

critical section
lock = false;

remainder section
}

30

Synchronization Hardware 

� Atomically swap two variables.

void Swap(boolean &a, boolean &b) {
boolean temp = a;
a = b;
b = temp;

}



11

31

Mutual Exclusion with Swap

� Shared data (initialized to false ): 
boolean lock;
boolean waiting[n];

� Process Pi

do {
key = true;
while (key == true) 

Swap(lock,key);
critical section

lock = false;
remainder section

}

32

Semaphores

� Synchronization tool that does not require busy waiting.
� Semaphore S – integer variable
� can only be accessed via two indivisible (atomic ) 

operations

wait (S)
signal (S)

33

Critical Section of n Processes

� Shared data:

semaphore mutex; // initially mutex = 1

� Process Pi: 

do {
wait(mutex);

critical section

signal(mutex);
remainder section

} while (1);



12

34

Semaphore Implementation

� Define a semaphore as a record
typedef struct {

int value;
struct process *L;

} semaphore;

� Assume two simple operations:
� block suspends the process that invokes it.
� wakeup( P) resumes the execution of a blocked process P.

35

Implementation

� Semaphore operations now defined as 

wait(S):
S.value--;
if (S.value < 0) { 

add this process to S.L;
block;

}

signal(S):
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

36

Semaphore as a General Synchronization Tool

� Execute B in Pj only after A executed in Pi

� Use semaphore flag initialized to 0
� Code:

Pi Pj

M M

A wait(flag)
signal(flag) B



13

37

Deadlock and Starvation

� Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes.

� Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);
M M

signal(S); signal(Q);

signal(Q) signal(S);
� Starvation – indefinite blocking.  A process may never be removed 

from the semaphore queue in which it is suspended.

38

Two Types of Semaphores

� Counting semaphore – integer value can range over 
an unrestricted domain.

� Binary semaphore – integer value can range only 
between 0 and 1; can be simpler to implement.

� Can implement a counting semaphore S as a binary 
semaphore.

39

Implementing S as a Binary Semaphore

� Data structures:
binary-semaphore S1, S2;
int C:  

� Initialization:
S1 = 1
S2 = 0
C = initial value of semaphore S



14

40

Implementing S

� wait operation
wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

� signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

41

Classical Problem of Synchronization

� Bounded-Buffer Problem

42

Bounded-Buffer Problem

� Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1



15

43

Bounded-Buffer Problem

� Producer Process

do { 
…
<produce an item in nextp>
…
wait(empty);
wait(mutex);
…

<add nextp to buffer>
…
signal(mutex);
signal(full);

} while (1);

� Consumer Process

do { 
wait(full)
wait(mutex);
…
<remove item from buffer to nextc>
…
signal(mutex);
signal(empty);
…
<consume the item in nextc>
…

} while (1);

44

Cooperating Processes

� Definition
� Shared-Memory
� Inter-Process Communication (IPC)
� Client-Server Paradigm
� Socket-based Communication

45

Inter-Process Communication (IPC)

� Mechanism for processes to communicate and to 
synchronize their actions.

� Message system – processes communicate with each 
other without resorting to shared variables.

� IPC facility provides two operations:
� send (message) – message size fixed or variable 

� receive (message)

� If P and Q wish to communicate, they need to:
� establish a communication link between them

� exchange messages via send/receive

� The communication link is provided by the OS



16

46

Implementation Questions

� Physical implementation
� Shared memory (single- or multi-processor systems)

� Hardware bus (multi-processor systems)
� Network (distributed systems)

� Logical properties
� Can a link be associated with more than two processes?
� How many links can there be between every pair of 

communicating processes?
� What is the capacity of a link?

� Is the size of a message that the link can accommodate fixed or 
variable?

� Is a link unidirectional or bi-directional?

47

Other aspects

� Addressing
� Synchronization

� between sender and receiver

48

Direct Addressing

� Processes must name each other explicitly.

� Symmetric scheme
� send (D, message) – send a message to process D
� receive (S, message) – receive a message from process S

� Asymmetric scheme
� send (D, message) – send a message to process D
� receive (proc, message) - receive a message from any process proc

� Logical properties
� A communication link exits between exactly two process
� Links are established automatically

� Links are usually FIFO



17

49

Indirect Addressing

� Messages are sent and received through mailboxes
� shared data structures where messages are queued 

temporarily
� Sometimes referred to as ports

� Processes can communicate only if they share a 
mailbox.

� Relationships
� One-to-one (private communication)
� Many–to-one (client-server communication) 
� Many-to-many (multicast communication)

� Properties of communication link
� Link established only if processes share a common mailbox
� Link may be unidirectional or bi-directional.

50

Indirect Communication

� Operations
� create a new mailbox

� send and receive messages through mailbox
� destroy a mailbox

� Primitives are defined as:
send (mb, message) – send a message to mailbox A
receive (mb, message) – receive a message from 
mailbox mb

51

Indirect Communication

� Mailbox sharing
� P1, P2, and P3 share mailbox A.

� P1, sends; P2 and P3 receive.
� Who gets the message?

� Solutions
� Allow a link to be associated with at most two processes.
� Allow only one process at a time to execute a receive operation.
� Allow the system to select arbitrarily the receiver.  Sender is 

notified who the receiver was.



18

52

Synchronization

� send and receive primitives may be
� Blocking (synchronous)
� Non-blocking (asynchronous)

� Blocking send, blocking receive
� Rendez-vous between sender and receiver

� Non-blocking send, blocking receive
� Most useful combination (used by servers)
� Variations: receive with timeout, select, proactive test

� Non-blocking send, Non-blocking receive
� Neither party is required to wait

53

Buffering

� Queue of messages attached to the link; implemented in 
one of three ways.
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).

2. Bounded capacity – finite length of n messages
Sender must wait if link full.

3. Unbounded capacity – infinite length 
Sender never waits.

54

Producer-Consumer: IPC-based solution (1)

Mailbox mb;

Process Producer {
while (1) {

/* produce message in nextProduced */
send(mb, nextProduced);

}
}

Process Consumer {
while (1) {

receive(mb, nextConsumed);
/* consume message in nextConsumed */
}

}



19

55

Producer-Consumer: IPC-based solution (2)

Mailbox mb1, mb2;
Process Producer {

while (1) {
/* produce message in nextProduced */
receive(mb2, consumer_ready);
send(mb1, nextProduced);

}
}
Process Consumer {

while (1) {
send(mb2, ack);
receive(mb1, nextConsumed);
/* consume message in nextConsumed */

}
}

56

Cooperating Processes

� Definition
� Shared-Memory
� Inter-Process Communication (IPC)
� Client-Server Paradigm
� Socket-based Communication

57

Client-Server Communication

ServerClient

Request

Results



20

58

Sockets

� A socket is defined as an endpoint for communication.
� Concatenation of IP address and port
� The socket 161.25.19.8:1625 refers to port 1625 on host 

161.25.19.8
� Communication consists between a pair of sockets.

59

Socket Communication

60

Remote Procedure Calls

� Remote procedure call (RPC) abstracts procedure calls 
between processes on networked systems.

� Stubs – client-side proxy for the actual procedure on the 
server.

� The client-side stub locates the server and marshalls the 
parameters.

� The server-side stub receives this message, unpacks the 
marshalled parameters, and performs the procedure on 
the server.



21

61

Remote Method Invocation

� Remote Method Invocation (RMI) is a Java mechanism 
similar to RPCs.

� RMI allows a Java program on one machine to invoke a 
method on a remote object.

62

Questions?


