Multimedia Networking

Acknowledgements
These Slides have been adapted from the originals made available by J. Kurose and K. Ross
All material copyright 1992-2009
J.F Kurose and K.W. Ross, All Rights Reserved

Goals

Principles
- classify multimedia applications
- identify application requirements
- making the best of best effort service

Protocols and Architectures
- specific protocols for best-effort
- mechanisms for providing QoS
- architectures for QoS
Roadmap

- Multimedia networking applications
- Streaming stored audio and video
- Protocols and architectures for audio/video streaming
 - Streaming Protocols
 - Content Distribution Networks (CDNs)
- Real-time interactive applications
- Protocols for real-time interactive applications
 - RTP
 - RTCP
 - SIP
- Providing multiple classes of service
- Providing QoS guarantees

Multimedia and Quality of Service (QoS)

multimedia applications: network audio and video ("continuous media")

QoS

network provides application with level of performance needed for application to function.
Audio digitalization/compression

- Analog signal sampled at constant rate
 - telephone: 8,000 samples/sec
 - CD music: 44,100 samples/sec

- Each sample quantized, i.e., rounded
 - e.g., $2^8 = 256$ possible quantized values

- Each quantized value represented by bits
 - 8 bits for 256 values
 - example: 8,000 samples/sec, 256 quantized values \rightarrow 64 Kbps

- Receiver converts bits back to analog signal:
 - some quality reduction

Audio digitalization/compression

Example rates

- Internet telephony: 5.3 kbps and up
 - GSM: 13 Kbps
 - PCM: 64 Kbps

- CD: 705.6 Mbps (mono) 1.411 Mbps (stereo)

- MPEG-1 Layer 3 (MP3): 96, 128, 160 kbps
Video digitalization/compression

- Video: sequence of images displayed at constant rate
 - e.g. 24 images/sec
- Digital image: array of pixels
 - each pixel represented by bits (luminance + colour)
- Redundancy
 - spatial (within image)
 - temporal (from one image to next)

Examples:
- MPEG 1 (CD-ROM) 1.5 Mbps
- MPEG2 (DVD) 3-6 Mbps
- MPEG4 (often used in Internet, < 1 Mbps)

Research:
- layered (scalable) video
 - adapt layers to available bandwidth
MM Networking Applications

Classification

- Stored streaming applications
 - YouTube
 - Video on demand

- Live streaming applications
 - Internet radio
 - IPTV (e.g., live sporting event)

- Interactive, real-time applications
 - Internet Telephony
 - Audio/video conferencing

Fundamental characteristics

- Typically delay sensitive
 - End-to-end delay
 - Delay jitter

- Loss tolerant: infrequent losses cause minor glitches

- Antithesis of data, which are loss intolerant but delay tolerant.

Jitter is the variability of packet delays within the same packet stream.
Streaming Stored Multimedia

Stored streaming:
- media stored at source
- transmitted to client
- streaming: client playout begins before all data has arrived
- timing constraint for still-to-be transmitted data: in time for playout

Streaming Stored Multimedia

Cumulative data
1. video recorded
2. video sent
3. video received, played out at client

Streaming: at this time, client playing out early part of video, while server still sending later part of video
Streaming *Stored* Multimedia: Interactivity

- **VCR-like functionality:** client can pause, rewind, FF, push slider bar
 - 10 sec initial delay OK
 - 1-2 sec until command effect OK

- timing constraint for still-to-be transmitted data: in time for playout

Streaming *Live* Multimedia

- Streaming (as with streaming *stored* multimedia)
 - playback buffer
 - playback can lag tens of seconds after transmission
 - still have timing constraint

- **Interactivity**
 - fast forward impossible
 - rewind, pause possible!
Real-Time Interactive Multimedia

- **end-end delay requirements:**
 - audio: < 150 msec good, < 400 msec OK
 - includes application-level (packetization) and network delays
 - higher delays noticeable, impair interactivity

- **session initialization**
 - how does callee advertise its IP address, port number, encoding algorithms?

Multimedia Over Today’s Internet

TCP/UDP over IP: “best-effort service”

- No guarantees on delay, jitter, loss

But we just said multimedia apps require QoS and level of performance to be effective!

Today’s Internet multimedia applications use application-level techniques to mitigate (as best possible) effects of delay, loss
How should the Internet evolve to better support multimedia?

Laissez-faire
- No major changes
- More bandwidth when needed (overprovisioning)
- Application layer solutions
 - content distribution networks
 - application-layer multicast

Differentiated services
- fewer changes to Internet infrastructure, yet provide 1st and 2nd class service

Integrated services
- fundamental changes in Internet so that apps can reserve end-to-end bandwidth
- requires new, complex software in hosts & routers

What's your opinion?

Roadmap
- Multimedia networking applications
- Streaming stored audio and video
- Protocols and architectures for audio/video streaming
 - RTSP
 - Content Distribution Networks (CDNs)
- Real-time interactive applications
- Protocols for real-time interactive applications
 - RTP
 - RTCP
 - SIP
- Providing multiple classes of service
- Providing QoS guarantees
Streaming Stored Multimedia

- Application-level streaming techniques
 - client-side buffering
 - use of UDP versus TCP
 - UDP streaming
 - HTTP, Adaptive HTTP streaming (use TCP)
 - multiple encodings of multimedia

- Media Player
 - Jitter removal
 - Decompression
 - Error concealment
 - Graphical user interface with controls for interactivity

Streaming Protocols (1)

- browser GETs metafile
- browser launches player, passing metafile
- player contacts server
- server streams audio/video to player
Streaming Protocols (2)

- Allows for non-HTTP protocol between streaming server and media player
- UDP typically used, with RTP and RTSP, for step (3)

Streaming Approaches

- UDP streaming
- HTTP streaming
- Dynamic Adaptive Streaming over HTTP (DASH)
UDP Streaming

- Uses UDP as transport protocol
 - With RTP as encapsulation protocol, and RTSP as control protocol
 - This is requires two additional protocols, thus increasing installation costs

- UDP can fail to provide continuous playout
 - Due to variation in the network operating conditions

- Many gateways are configured to block UDP traffic

HTTP Streaming

- Uses TCP as underlying transport protocol
 - Despite of congestion, reliability and flow control

- No problems in traversing gateways

- No needs for additional control protocols (RTP, RTSP)
 - This reduces installation costs
 - HTTP byte-range header in GET messages used for repositioning

- Allows pre-fetching of data

- Youtube and Netflix use HTTP (over TCP) as their streaming protocol

- All users receive the same encoding of video
Streaming: Client Buffering

- client-side buffering, playout delay compensate for network-added delay, delay jitter

Variable fill rate, $x(t)$, constant drain rate, d, to decompression and playout.
Adaptive Streaming

Dynamic Adaptive Streaming over HTTP (DASH)

- Different encoded version of streaming data
 - Different bit rate and quality
 - Clients select the encoded version on the basis of the available bandwidth
 - Important for mobile users
- Different versions have different URL
 - Provided in the manifest (presentation description) file
- Rate determination algorithm for measuring the available bandwidth
 - Smooth decrease of the bit rate to avoid noticeable changes in the streamed sequence
 - Better utilization of the de-jittering buffer

Roadmap

- Multimedia networking applications
- Streaming stored audio and video
- Protocols and architectures for audio/video streaming
 - Streaming Protocols
 - Content Distribution Networks (CDNs)
- Real-time interactive applications
- Protocols for real-time interactive applications
 - RTP
 - RTCP
 - SIP
- Providing multiple classes of service
- Providing QoS guarantees
Content Distribution Networks (CDNs)

Content replication
- challenging to stream large files (e.g., video) from single origin server in real time
- solution: replicate content at hundreds of servers throughout Internet
 - content downloaded to CDN servers ahead of time
 - placing content “close” to user avoids impairments (loss, delay) of sending content over long paths
 - CDN server typically in edge/access network

CDN customer is the content provider (e.g., CNN)
- CDN replicates customers’ content in CDN servers.
- when provider updates content, CDN updates servers
- CDN may either private or third-party company
 - Google’s CDN for YouTube
 - Akamay for Netflix, Hulu, …
CDNs: Server Placement

- **Enter Deep**
 - Server clusters are located in access ISP all over the world
 - typically a dozen of servers per cluster
 - Akamai has cluster in 1700 locations
 - Increased performance
 - Cluster management is a big challenge

- **Bring Home**
 - Large clusters in a small number of locations
 - Easier management of clusters
 - To improve performance site locations are chosen strategically

CDN Operations

1. Client
2. Local DNS server
3. NetCinema Authoritative DNS server
4. CDN Authoritative DNS server
5. HTTP request for 6YB23V
6. CDN server (cluster near to client)
Cluster Selection Strategy

- **Geographically Closest**
 - The cluster closest to the LDNS is assigned (map of LDNS locations)
 - May not be the closest on the Internet path (some clients use a remote LDNS)
 - Does not consider traffic variations

- **Real-time measurements**
 - Clusters send periodic probe messages to LDNSs
 - Measures the delay between SYNACK and ACK
 - ...

- **IP anycast**
 - Same IP address used for all clusters
 - BGP selects the best path (in terms of # of Ass)

Case Studies

- **NetFlix**
 - Amazon cloud for content storing
 - Third-party CDNs for distribution
 - DASH for client-server interaction

- **YouTube**
 - Private Google CDN
 - HTTP streaming

- **KanKan (PPTV, ...)**
 - P2P video streaming
 - Similar to BitTorrent
 - DHT for content tracking
 - Priority is given to chunks to play in the near future
 - Uses UDP
Roadmap

- Multimedia networking applications
- Streaming stored audio and video
- Protocols and architectures for audio/video streaming
 - Streaming Protocols
 - Content Distribution Networks (CDNs)
- Real-time interactive applications
- Protocols for real-time interactive applications
 - RTP
 - RTCP
 - SIP
- Providing multiple classes of service
- Providing QoS guarantees

Real-time interactive applications

- PC-2-PC phone
 - Skype
- PC-2-phone
 - Skype
 - Dialpad
 - Net2phone
- Videoconference with webcams
 - Skype
 - Polycom

We will look at a PC-2-PC Internet phone example in detail
Internet Phone

- Speaker’s audio: alternating talk spurts, silent periods.
 - 64 kbps during talk spurt
 - pkts generated only during talk spurts
 - 20 msec chunks at 8 Kbytes/sec: 160 bytes data
- application-layer header added to each chunk.
- chunk+header encapsulated into UDP segment.
- application sends UDP segment into socket every 20 msec during talkspurt

Packet Loss and Delay

- **Network loss**: IP datagram lost due to network congestion
 - buffer overflow at some intermediate router
- **Delay loss**: IP datagram arrives too late for playout at receiver
 - delays: processing, queueing in network; end-system (sender, receiver) delays
 - typical maximum tolerable delay: 400 ms
- **loss tolerance**: depending on voice encoding, loss concealment technique, packet loss rates between 1% and 10% can be tolerated.
Delay Jitter

- Consider end-to-end delays of two consecutive packets: difference can be more or less than 20 msec (transmission time difference).

Fixed Playout Delay

- Receiver attempts to playout each chunk exactly q msecs after chunk was generated.
 - Chunk has time stamp t: play out chunk at t+q.
 - Chunk arrives after t+q: data arrives too late for playout, data “lost”

- Tradeoff in choosing q:
 - Large q: less packet loss
 - Small q: better interactive experience
Fixed Playout Delay

- sender generates packets every 20 msec during talk spurt.
- first packet received at time r
- first playout schedule: begins at p
- second playout schedule: begins at p’

Adaptive Playout Delay (1)

- **Goal**: minimize playout delay, keeping late loss rate low
- **Approach**: adaptive playout delay adjustment:
 - estimate network delay, adjust playout delay at beginning of each talk spurt.
 - silent periods compressed and elongated.
 - chunks still played out every 20 msec during talk spurt.

 \[t_i = \text{timestamp of the } i\text{th packet} \]
 \[r_i = \text{the time packet } i \text{ is received by receiver} \]
 \[p_i = \text{the time packet } i \text{ is played at receiver} \]
 \[r_i - t_i = \text{network delay for } i\text{th packet} \]
 \[d_i = \text{estimate of average network delay after receiving } i\text{th packet} \]

 Dynamic estimate of average delay at receiver:

 \[d_i = (1 - u)d_{i-1} + u(r_i - t_i) \]

 where \(u \) is a fixed constant (e.g., \(u = .01 \)).
Adaptive Playout Delay (2)

- Also useful to estimate average deviation of delay, v_i:
 \[v_i = (1-u)v_{i-1} + u |v_{i-1} - d_i| \]

- Estimates d_i, v_i calculated for every received packet (but used only at start of talk spurt).

- For first packet in talk spurt, playout time is:
 \[p_i = t_i + d_i + Kv_i \]
 where K is positive constant (e.g., 4).

- Remaining packets in talk spurt are played out periodically.

Adaptive Playout Delay (3)

How does receiver determine whether packet is first in a talk spurt?

- If no loss, receiver looks at successive timestamps.
 - Difference of successive stamps > 20 msec \rightarrow talk spurt begins.

- With loss possible, receiver must look at both time stamps and sequence numbers.
 - Difference of successive stamps > 20 msec and sequence numbers without gaps \rightarrow talk spurt begins.
Multimedia Networking 45

Recovery from Packet Loss (1)

Forward Error Correction (FEC): simple scheme

- For every group of \(n \) chunks create redundant chunk by exclusive OR-ing \(n \) original chunks
- Send out \(n+1 \) chunks
 - bandwidth increases by factor \(1/n \).
- Can reconstruct original \(n \) chunks if at most one lost chunk from \(n+1 \) chunks
- Playout delay: enough time to receive all \(n+1 \) packets
- Tradeoff:
 - increase \(n \), less bandwidth waste
 - increase \(n \), longer playout delay
 - increase \(n \), higher probability that 2 or more chunks will be lost

Recovery from Packet Loss (2)

2nd FEC scheme
- "piggyback lower quality stream"
- send lower resolution audio stream as redundant information
- e.g., nominal stream PCM at 64 kbps and redundant stream GSM at 13 kbps.

- whenever there is non-consecutive loss, receiver can conceal the loss.
- can also append (n-1)st and (n-2)nd low-bit rate chunk
Recovery from Packet Loss (3)

Interleaving
- chunks divided into smaller units
- for example, four 5 msec units per chunk
- packet contains small units from different chunks
- if packet lost, still have most of every chunk
- no redundancy overhead, but increases playout delay
 - Mainly used in streaming of stored audio

Real-time Multimedia: Summary
- use UDP to avoid TCP congestion control (delays) for time-sensitive traffic
- client-side adaptive playout delay: to compensate for delay
- server side matches stream bandwidth to available client-to-server path bandwidth
 - dynamic server encoding rate
- error recovery (on top of UDP)
 - FEC, interleaving, error concealment
 - retransmissions, time permitting
Roadmap

- Multimedia networking applications
- Streaming stored audio and video
- Protocols for audio/video streaming
 - Streaming Protocols
- Real-time interactive applications
- Protocols for real-time interactive applications
 - RTP
 - RTCP
 - SIP
- Providing multiple classes of service
- Providing QoS guarantees

Real-Time Protocol (RTP) [RFC 3550]

- RTP specifies packet structure for packets carrying audio, video data
- RTP packet provides
 - payload type identification
 - packet sequence numbering
 - time stamping
- RTP runs in end systems
- RTP packets encapsulated in UDP segments
- interoperability:
 - if two Internet phone applications run RTP, then they may be able to work together
RTP Example

- Consider sending 64 kbps PCM-encoded voice over RTP.
- Application collects encoded data in chunks, e.g., every 20 msec = 160 bytes in a chunk.
- Audio chunk + RTP header form RTP packet, which is encapsulated in UDP segment.
- RTP header indicates type of audio encoding in each packet.
 - Sender can change encoding during conference.
- RTP header also contains sequence numbers, timestamps.

RTP and QoS

- RTP does not provide any mechanism to ensure timely data delivery or other QoS guarantees.
- RTP encapsulation is only seen at end systems (not) by intermediate routers.
 - Routers provide best-effort service, making no special effort to ensure that RTP packets arrive at destination in timely matter.
RTP Header

Payload Type (7 bits): Indicates type of encoding currently being used. If sender changes encoding in middle of conference, sender informs receiver via payload type field.

- Payload type 0: PCM mu-law, 64 kbps
- Payload type 3: GSM, 13 kbps
- Payload type 7: LPC, 2.4 kbps
- Payload type 26: Motion JPEG
- Payload type 31: H.261
- Payload type 33: MPEG2 video

Sequence Number (16 bits): Increments by one for each RTP packet sent, and may be used to detect packet loss and to restore packet sequence.

RTP Header (2)

- Timestamp field (32 bytes long): sampling instant of first byte in this RTP data packet
 - For audio, timestamp clock typically increments by one for each sampling period (for example, each 125 usecs for 8 KHz sampling clock)
 - If application generates chunks of 160 encoded samples, then timestamp increases by 160 for each RTP packet when source is active. Timestamp clock continues to increase at constant rate when source is inactive.

- SSRC field (32 bits long): identifies source of RTP stream.
 - Random number.
 - Each stream in RTP session should have distinct SSRC.
Developing Applications using RTP

RTP libraries provide transport-layer interface that extends UDP:

- Information to be provided
 - port numbers, IP addresses
 - payload type identification
 - packet sequence numbering
 - time-stamping
 - SSRC

Roadmap

- Multimedia networking applications
- Streaming stored audio and video
- Protocols for audio/video streaming
 - Streaming Protocols
 - Content Distribution Networks
- Real-time interactive applications
- Protocols for real-time interactive applications
 - RTP
 - RTCP
 - SIP
- Providing multiple classes of service
- Providing QoS guarantees
Real-Time Control Protocol (RTCP) [RFC 3550]

- Works in conjunction with RTP.
- Each participant in RTP session periodically transmits RTCP control packets to all other participants.
- Each RTCP packet contains sender and/or receiver reports:
 - report statistics useful to application:
 - # packets sent
 - # packets lost
 - inter-arrival jitter, etc.
- Feedback can be used to control performance
 - sender may modify its transmissions based on feedback

RTCP: Example

- RTP session: typically a single multicast address
 - Both sender and receivers send RTCP packets
- RTP, RTCP packets distinguished from each other via distinct port numbers
 - RTCP port number = RTP port number +1
 - To limit traffic, each participant reduces RTCP traffic as number of conference participants increases
RTCP Packets

Receiver report packets:
- SSRC of RTP stream, fraction of packets lost, last sequence number, average inter-arrival jitter

Sender report packets:
- SSRC of RTP stream, current time, number of packets sent, number of bytes sent

Source description packets:
- e-mail address of sender, sender's name, SSRC of associated RTP stream
- provide a mapping between the SSRC and the user/host name

Synchronization of Streams

- RTCP can synchronize different media streams within a RTP session
- Consider videoconferencing app for which each sender generates one RTP stream for video, one for audio.
- Timestamps in RTP packets tied to the video, audio sampling clocks
 - not tied to wall-clock time
- Each RTCP sender-report packet contains (for most recently generated packet in associated RTP stream):
 - timestamp of RTP packet
 - wall-clock time for when packet was created.
- receivers uses association to synchronize playout of audio, video
RTCP Bandwidth Scaling

- RTCP attempts to limit its traffic to 5% of session bandwidth.
 - Example: one sender, sending video at 2 Mbps. Then RTCP attempts to limit its traffic to 100 Kbps.
- RTCP gives 75% of rate to receivers; remaining 25% to sender
- 75 kbps is equally shared among receivers:
 - with R receivers, each receiver gets to send RTCP traffic at 75/R kbps.
 - Each receiver send reports to any other \(R \) is known
- Sender gets to send RTCP traffic at 25 kbps.
- Participant determines RTCP packet transmission period
 - by calculating avg RTCP packet size (across entire session) and dividing by allocated rate

Roadmap

- Multimedia networking applications
- Streaming stored audio and video
- Protocols for audio/video streaming
 - Streaming Protocols
 - Content Distribution Networks
- Real-time interactive applications
- Protocols for real-time interactive applications
 - RTP
 - RTCP
 - SIP
- Providing multiple classes of service
- Providing QoS guarantees
SIP: Session Initiation Protocol
[RFC 3261, 5411]

SIP long-term vision:

- All telephone calls, video conference calls take place over Internet
- People are identified by names or e-mail addresses, rather than by phone numbers
 - E.g., Skype name
- You can reach callee, no matter
 - where callee roams,
 - what IP device callee is currently using

SIP Services

- Setting up a call, SIP provides mechanisms ..
 - for caller to let callee know he/she wants to establish a call
 - so caller, callee can agree on media type, encoding
 - to end call
- Determine current IP address of callee:
 - maps mnemonic identifier to current IP address
- Call management:
 - add new media streams during call
 - change encoding during call
 - invite other participants
 - transfer, hold calls
Setting up a Call to Known IP Address

- Alice's SIP invite message indicates her port number, IP address, encoding she prefers to receive (PCM ulaw).

- Bob's 200 OK message indicates his port number, IP address, preferred encoding (GSM).

- SIP messages can be sent over TCP or UDP; here sent over RTP/UDP.

- Default SIP port number is 5060.

Codec negotiation:
- Suppose Bob doesn't have PCM ulaw encoder.
- Bob will instead reply with:
 - 600 Not Acceptable Reply (listing his encoders)
- Alice can then send new INVITE message, advertising different encoder.

Rejecting a call:
- Bob can reject with replies “busy,” “gone,” “payment required,” “forbidden.”
Example of SIP Message

INVITE sip: bob@domain.com SIP/2.0
Via: SIP/2.0/UDP 167.180.112.24
From: sip: alice@hereway.com
To: sip: bob@domain.com
Call-ID: a2e3a@pigeon.hereway.com
Content-Type: application/sdp
Content-Length: 885

c=IN IP4 167.180.112.24
m=audio 38060 RTP/AVP 0

Notes:
- HTTP message syntax
- sdp = session description protocol
- Call-ID is unique for every call.

Name Translation and User Location

- Caller wants to call callee
 - but only has callee’s name or e-mail address.
- Needs to get IP address of callee’s current host:
 - User moves around
 - DHCP protocol
 - User has different IP devices (PC, PDA, car device)
- Result can be based on:
 - time of day (work, home)
 - caller (don’t want boss to call you at home)
 - status of callee (calls sent to voicemail when callee is already talking to someone)
Service Provided by SIP Servers

- SIP registrar server
- SIP proxy server

SIP Registrar

- When Bob starts SIP client, client sends SIP REGISTER message to Bob’s registrar server (similar function needed by Instant Messaging)

Register Message:

```
REGISTER sip:domain.com SIP/2.0
Via: SIP/2.0/UDP 193.64.210.89
From: sip:bob@domain.com
To: sip:bob@domain.com
Expires: 3600
```
SIP Proxy

- Alice sends invite message to her proxy server
 - contains address sip:bob@domain.com
- Proxy responsible for routing SIP messages to callee
 - possibly through multiple proxies.
- Callee sends response back through the same set of proxies.
- Proxy returns SIP response message to Alice
 - contains Bob's IP address
- Proxy analogous to local DNS server

Example

Caller jim@umass.edu with places a call to keith@upenn.edu

1. Jim sends INVITE message to umass SIP proxy.
2. Proxy forwards request to upenn registrar server.
3. upenn server returns redirect response, indicating that it should try keith@eurecom.fr
4. umass proxy sends INVITE to eurecom registrar. (5) eurecom registrar forwards INVITE to 197.87.54.21, which is running keith's SIP client. (6-8) SIP response sent back (9) media sent directly between clients.

Note: also a SIP ack message, which is not shown.
Roadmap

- Multimedia networking applications
- Streaming stored audio and video
- Protocols and architectures for audio/video streaming
 - Streaming Protocols
 - Content Distribution Networks
- Real-time interactive applications
- Protocols for real-time interactive applications
 - RTP
 - RTCP
 - SIP
- Providing multiple classes of service
- Providing QoS guarantees

Providing Multiple Classes of Service

- Thus far: making the best of best effort service
 - One-size fits all service model
- Alternative: multiple classes of service
 - Partition traffic into classes
 - Manage different classes of traffic differently
- Granularity:
 - Differential service among multiple classes, not among individual connections
- History: ToS bits
Multiple Classes of Service: Scenario

Principles for QOS Guarantees

- Example: 1Mbps IP phone, FTP share 1.5 Mbps link.
 - Bursts of FTP can congest router, cause audio loss
 - Want to give priority to audio over FTP

Principle 1
Packet marking needed for router to distinguish between different classes; and new router policy to treat packets accordingly
Principles for QoS Guarantees

- what if applications misbehave (audio sends higher than declared rate)
 - policing: force source adherence to bandwidth allocations
- marking and policing at network edge:
 - similar to ATM UNI (User Network Interface)
- policing: force source adherence to bandwidth allocations

Provide protection (isolation) for one class from others

Principle 2

Principles for QoS Guarantees

- Allocating fixed (non-sharable) bandwidth to flow: inefficient use of bandwidth if flows don't use its allocation

While providing isolation, it is desirable to use resources as efficiently as possible

Principle 3
Scheduling And Policing Mechanisms

- **Scheduling**: choose next packet to send on link
- **FIFO (first in first out) scheduling**:
 - send in order of arrival to queue
 - **discard policy**: if packet arrives to full queue: who to discard?
 - Tail drop: drop arriving packet
 - priority: drop/remove on priority basis
 - random: drop/remove randomly

Priority-based Scheduling

Transmit highest priority queued packet

- **Multiple classes**, with different priorities
 - class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc..
 - Real world example?
Round Robin Scheduling

- Multiple classes
- Cyclically scan class queues, serving one from each class (if available)
- Real world example?

Weighted Fair Queuing

- Generalized Round Robin
- Each class gets weighted amount of service in each cycle
- Real-world example?
Policing Mechanisms

Goal: limit traffic to not exceed declared parameters

Three common-used criteria:

- **(Long term) Average Rate**: how many pkts can be sent per unit time (in the long run)
 - crucial question: what is the interval length: 100 packets per sec or 6000 packets per min have same average!
- **Peak Rate**: e.g., 6000 pkts per min. (ppm) avg.: 1500 ppm peak rate
- **(Max.) Burst Size**: max. number of pkts sent consecutively (with no intervening idle)

Policing Mechanisms

Token Bucket: limit input to specified Burst Size and Average Rate.

- bucket can hold b tokens
- tokens generated at rate r token/sec unless bucket full
- over interval of length t: number of packets admitted less than or equal to \((r \times t + b)\).
Policing Mechanisms (more)

- Token bucket, WFQ combine to provide guaranteed upper bound on delay, i.e., QoS guarantee!

$$D_{\text{max}} = \frac{b}{R}$$

IETF Differentiated Services (DiffServ)

- Want “qualitative” service classes
 - "behaves like a wire"
 - relative service distinction: Platinum, Gold, Silver

- Scalability:
 - simple functions in network core, relatively complex functions at edge routers (or hosts)
 - signaling, maintaining per-flow router state difficult with large number of flows

- Don’t define service classes
 - Just provide functional components to build service classes
Diffserv Architecture

Edge router:
- per-flow traffic management
- marks packets as in-profile and out-profile

Core router:
- per class traffic management
- buffering and scheduling based on marking at edge
- preference given to in-profile packets

Edge-router Packet Marking

- profile: pre-negotiated rate A, bucket size B
- packet marking at edge based on per-flow profile

Possible usage of marking:
- class-based marking: packets of different classes marked differently
- intra-class marking: conforming portion of flow marked differently than non-conforming one
Classification and Conditioning

- Packet is marked in the Type of Service (TOS) in IPv4, and Traffic Class in IPv6
 - 6 bits used for Differentiated Service Code Point (DSCP) and determine PHB that the packet will receive
 - 2 bits are currently unused

May be desirable to limit traffic injection rate of some class:
- user declares traffic profile (e.g., rate, burst size)
- traffic metered, shaped if non-conforming
Per Hop Behaviour (PHB)

- PHB result in a different observable (measurable) forwarding performance behavior
- PHB does not specify what mechanisms to use to ensure required PHB performance behavior
- Examples:
 - Class A gets x% of outgoing link bandwidth over time intervals of a specified length
 - Class A packets leave first before packets from class B

Forwarding (PHB)

PHBs being developed:

- Expedited Forwarding: pkt departure rate of a class equals or exceeds specified rate
 - logical link with a minimum guaranteed rate
- Assured Forwarding: 4 classes of traffic
 - each guaranteed minimum amount of bandwidth
 - each with three drop preference partitions
Roadmap

- Multimedia networking applications
- Streaming stored audio and video
- Protocols and architectures for audio/video streaming
 - Streaming Protocols
 - Content Distribution Networks
- Real-time interactive applications
- Protocols for real-time interactive applications
 - RTP
 - RTCP
 - SIP
- Providing multiple classes of service
- Providing QoS guarantees

Principles for QoS Guarantees

- Basic fact of life: can not support traffic demands beyond link capacity

Principle 4

Call Admission: flow declares its needs, network may block call (e.g., busy signal) if it cannot meet needs
QoS Guarantee Scenario

- Resource reservation
 - call setup, signaling (RSVP)
 - traffic, QoS declaration
 - per-element admission control
 - QoS-sensitive scheduling (e.g., WFQ)

IETF Integrated Services (IntServ)

- Architecture for providing QoS guarantees in IP networks for individual application sessions
- Resource reservation: routers maintain state info (a la VC) of allocated resources, QoS req’s
- Admit/Deny new call setup requests:

 Question: can newly arriving flow be admitted with performance guarantees while not violated QoS guarantees made to already admitted flows?
Call Admission

Arriving session must:
- Declare its QoS requirement
 - R-spec: defines the QoS being requested
- Characterize traffic it will send into network
 - T-spec: defines traffic characteristics
- Signaling protocol: needed to carry R-spec and T-spec to routers
 - RSVP

Intserv Service Models [RFC 2211, 2212]

Guaranteed service:
- worst case traffic arrival: leaky-bucket-policed source
- simple (mathematically provable) bound on delay [Parekh 1992, Cruz 1988]

Controlled load service:
- "a quality of service closely approximating the QoS that same flow would receive from an unloaded network element."

\[D_{\text{max}} = \frac{b}{R} \]
Signaling in the Internet

connectionless (stateless) forwarding by IP routers + best effort service = no network signaling protocols in initial IP design

- New requirement: reserve resources along end-to-end path (end system, routers) for QoS for multimedia applications
- RSVP: Resource Reservation Protocol [RFC 2205]
 - ”... allow users to communicate requirements to network in robust and efficient way." i.e., signaling!
- earlier Internet Signaling protocol: ST-II [RFC 1819]

RSVP Design Goals

1. Accommodate heterogeneous receivers (different bandwidth along paths)
2. Accommodate different applications with different resource requirements
3. Make multicast a first class service, with adaptation to multicast group membership
4. Leverage existing multicast/unicast routing, with adaptation to changes in underlying unicast, multicast routes
5. Control protocol overhead to grow (at worst) linear in # receivers
6. Modular design for heterogeneous underlying technologies
RSVP: does not...

- Specify how resources are to be reserved
 - rather: a mechanism for communicating needs
- Determine routes packets will take
 - that’s the job of routing protocols
 - signaling decoupled from routing
- Interact with forwarding of packets
 - separation of control (signaling) and data (forwarding) planes

RSVP: Overview of Operation

- Senders, receiver join a multicast group
 - done outside of RSVP
 - senders need not join group
- Sender-to-network signaling
 - path message: make sender presence known to routers
 - path teardown: delete sender’s path state from routers
- Receiver-to-network signaling
 - reservation message: reserve resources from sender(s) to receiver
 - reservation teardown: remove receiver reservations
- Network-to-end-system signaling
 - path error
 - reservation error
Summary

Principles
- classify multimedia applications
- identify network services applications need
- making the best of best effort service

Protocols and Architectures
- specific protocols for best-effort
- mechanisms for providing QoS
- architectures for QoS
 - multiple classes of service
 - QoS guarantees, admission control