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What is an Operating System?

� A program that acts as an intermediary between 
a user of a computer and the computer 
hardware.hardware.

� Operating system goals:
� Provide an environment for executing user programs 

and making solving user problems easier.
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and making solving user problems easier.

� Make the computer system convenient to use.

� Use the computer hardware in an efficient manner.
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Abstract View
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Mono -programmed Systems
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Multi-programmed Systems
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Features for Multiprogramming

�Memory management

� the system must allocate the memory to 
several jobs.

�CPU scheduling

� the system must choose among several jobs 
ready to run.
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�Device management

� Allocation of devices to concurrent processes
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System Classification (1)

� Batch systems
� No interaction with the user

� Interactive systems� Interactive systems
� The user interacts with the systems during process 

execution

� Response times should be short

� Real time systems
� Soft real-time systems

9Basic Concepts

� Soft real-time systems

� Hard real-time systems

� General-purpose systems
� The system has to manage a mix of batch, interactive 

and soft real-time processes
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System Classification (2)

� Mainframe systems

� Desktop systems

� Server systems

� Parallel systems

� Distributed systems

� Cluster systems
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� Cluster systems

� Embedded systems

� Hand-held systems
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Goals of an Operating System

� Make the computer easy to use (e.g. PC)

� Optimize the computational resources (e.g. 
mainframe) mainframe) 

� Optimize shared resources (e.g., distributed 
systems)

� Make the computer easy to use and optimize 
energetic resources (e.g., handheld 
computers)
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computers)
� …

Convenience vs. efficiency
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Operating System Services

� User Interface
�Command-Line (CLI)

�Graphics User Interface (GUI)

Batch�Batch

� Program execution
�system capability to load a program into memory and to run 

it.

� I/O operations
since user programs cannot execute I/O operations directly, 
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�since user programs cannot execute I/O operations directly, 
the operating system must provide some means to perform 
I/O.

� File-system manipulation
�program capability to read, write, create, and delete files.
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Operating System Services

� Communications
� exchange of information between processes on the 

same computer or on different systems tied together by same computer or on different systems tied together by 
a network.

� Implemented via shared memory or message passing.

� Error detection
� ensure correct computing by detecting errors in the CPU 

and memory hardware, in I/O devices, or in user 
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and memory hardware, in I/O devices, or in user 
programs.
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Operating System Services

Additional functions exist not for helping the user, but 
rather for ensuring efficient system operations.

� Resource allocation
� Many types of resources - Some (such as CPU cycles, main 

memory, and file storage) may have special allocation code, 
others (such as I/O devices) may have general request and 
release code 

� Accounting 
� To keep track of which users use how much and what kinds of 

computer resources

� Protection and security
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� Protection and security
� Protection involves ensuring that all access to system resources 

is controlled
� Security of the system from outsiders requires user 

authentication, extends to defending external I/O devices from 
invalid access attempts
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A View of OS Services
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User Interface

� Command Line Interface (CLI) – Command 
Interpreter

Sometimes implemented in kernel, sometimes by � Sometimes implemented in kernel, sometimes by 
systems program
�Sometimes multiple flavors implemented – shells

� Primarily fetches a command from user and executes it
�Sometimes commands built-in, sometimes just names of 

programs
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programs

– If the latter, adding new features doesn’t require shell modification
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Graphic User Interface - GUI

� User-friendly desktop metaphor interface
� Usually mouse, keyboard, and monitor

Icons represent files, programs, actions, etc� Icons represent files, programs, actions, etc

� Various mouse buttons over objects in the interface cause various 
actions (provide information, options, execute function, open 
directory (known as a folder)

� Invented at Xerox PARC

� Many systems now include both CLI and GUI 
interfaces

18Basic Concepts

interfaces
� Microsoft Windows is GUI with CLI “command” shell

� Apple Mac OS X as “Aqua” GUI interface with UNIX kernel 
underneath and shells available

� Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)
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Bourne Shell Command Interpreter
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The Mac OS X GUI
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System Calls

� Programming interface to the services provided by the OS

� Typically written in a high-level language (C or C++)

� Mostly accessed by programs via a high-level Application � Mostly accessed by programs via a high-level Application 
Program Interface (API) rather than direct system call use
� Win32 API for Windows

� POSIX API for POSIX-based systems (including virtually all 
versions of UNIX, Linux, and Mac OS X)

� Java API for the Java virtual machine (JVM)
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� Why use APIs rather than system calls?
� Portability

� Usability (API functions are typically easier to use than system calls)
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Example of System Calls

� System call sequence to copy the contents of one 
file to another file
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Example of Standard API

� Consider the ReadFile() function in the Win32 API-- a 
function for reading from a file

� Description of the parameters passed to ReadFile()
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� HANDLE file—the file to be read

� LPVOID buffer—a buffer where the data will be read into and written from

� DWORD bytesToRead—the number of bytes to be read into the buffer

� LPDWORD bytesRead—the number of bytes read during the last read

� LPOVERLAPPED ovl—indicates if overlapped I/O is being used
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System Call Implementation

� Typically, a number associated with each system call
� The compiler maintains a table of system calls

� The system call interface invokes intended system call in � The system call interface invokes intended system call in 
OS kernel and returns status of the system call and any 
return values

� The caller needs know nothing about how the system call is 
implemented
� Just needs to obey API and understand what OS will do as a result 

call
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call

� Most details of  OS interface are hidden from programmer by API  

� Managed by run-time support library (set of functions built into libraries 
included with compiler)
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API–System Call–OS Relationship
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Transition from User to Kernel Mode
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Standard C Library Example

� C program invoking printf() library call, which 
calls write() system call
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System Call Parameter Passing

� Often, more information is required than simply identity of 
desired system call
� Exact type and amount of information vary according to OS and call

� Three general methods used to pass parameters to the OS� Three general methods used to pass parameters to the OS
� Simplest:  pass the parameters in registers

� In some cases, may be more parameters than registers

� Parameters stored in a block, or table, in memory, and address of 
block passed as a parameter in a register 
� This approach taken by Linux and Solaris

� Parameters placed, or pushed, onto the stack by the program and 
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� Parameters placed, or pushed, onto the stack by the program and 
popped off the stack by the operating system

� Block and stack methods do not limit the number or length of 
parameters being passed
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Parameter Passing via Table
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Types of System Calls

� Process control

� File management

� Device management

� Information maintenance

� Communications
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Process control

� create_process()

� end(), abort()

� load()

� execute()

� get_process_attribute(), set_process_attribute()

� wait(time), wait(event)

� signal(event)

32Basic Concepts

� signal(event)
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File Manipulation

� create_file(), delete_process()

� open(), close()

� read(), write(),

� get_file_attributes(), set_file_attributes()
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Device Management

� request_device(), release_device()

� read(), write()� read(), write()

� get_device_attribute(), set_device_attribute()

� logical_attach_device(), logical_detach_device()
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System Calls (5)

� get_time(), get_date()

� set_time(), set_date()

get_process_attribute(), set_process_attribute()� get_process_attribute(), set_process_attribute()

� get_file_attribute(), set_file_attribute()

� get_device_attribute(), set_device_attribute()
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Communications

� create_connection(), 

� delete_connection()

� send(msg), receive(msg)
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Examples of Windows/Unix System Calls
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System Programs

� System programs provide a convenient environment 
for program development and execution.  They can be 
divided into:divided into:
� File manipulation 

� Status information

� File modification

� Programming language support

� Program loading and execution

� Communications
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� Communications

� Application programs

� Most users’ view of the operation system is defined by 
system programs, not the actual system calls
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System Programs

� Provide a convenient environment for program 
development and execution
� Some of them are simply user interfaces to system calls; others are 

considerably more complex

� File management 
� Create, delete, copy, rename, print, dump, list, and generally 

manipulate files and directories

� Status information
� Some ask the system for info - date, time, amount of available 

40Basic Concepts

� Some ask the system for info - date, time, amount of available 
memory, disk space, number of users

� Others provide detailed performance, logging, and debugging 
information

� Typically, these programs format and print the output to the terminal 
or other output devices
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System Programs (cont’d)

� File modification
� Text editors to create and modify files

� Special commands to search contents of files or perform 
transformations of the texttransformations of the text

� Programming-language support
� Compilers, assemblers, debuggers and interpreters sometimes 

provided

� Program loading and execution
� Absolute loaders, relocatable loaders, linkage editors, and overlay-

loaders, debugging systems for higher-level and machine language
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loaders, debugging systems for higher-level and machine language

� Communications 
� Allow users to send messages to one another’s screens, browse 

web pages, send electronic-mail messages, log in remotely, transfer 
files from one machine to another
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Common System Components

� User Interface

� Process Manager� Process Manager

� Memory Manager

� File Manager

� I/O System Manager

� Secondary Memory Manager

43Basic Concepts

� Secondary Memory Manager

� Networking

� Protection System
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Process Manager

� The process manager is responsible for the 
following activities
� Process creation and deletion.� Process creation and deletion.

� process suspension and resumption.

� Provision of mechanisms for:
�process synchronization

�process communication
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Memory Manager

� Memory is a large array of words or bytes, each 
with its own address.  

� It is a repository of quickly accessible data shared � It is a repository of quickly accessible data shared 
by the CPU and I/O devices.

� Main memory is a volatile storage device.  

� The memory manager is responsible for the 
following activities
� Keep track of which parts of memory are currently 
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� Keep track of which parts of memory are currently 
being used and by whom.

� Allocate and deallocate memory space as needed.
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File Manager

� A file is a collection of related information defined 
by its creator. 

The file manager is responsible for the following � The file manager is responsible for the following 
activities:
� File creation and deletion.
� Directory creation and deletion.
� Support of primitives for manipulating files and 

directories.
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� Mapping files onto secondary storage.
� File backup on stable (nonvolatile) storage media.
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I/O System Manager

� The I/O system consists of:

� A general device-driver interface� A general device-driver interface

� Drivers for specific hardware devices

� A buffer-caching system
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Secondary -Storage Manager

� Main memory (primary storage) is volatile and 
too small to accommodate all data and 
programs permanently

� The computer system must provide secondary 
storage as a permanent storage system.
� Typically Disks

� The operating system is responsible for the 
following activities in connection with disk 
management: 
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management: 
� Free space management
� Storage allocation
� Disk scheduling
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Networking (Distributed Systems)

� A distributed system is a collection processors that 
do not share memory or a clock.  Each processor 
has its own local memory.has its own local memory.

� The processors in the system are connected 
through a communication network.

� Communication takes place using a protocol.
� A distributed system provides user access to 

various system resources.
Access to a shared resource allows:

49Basic Concepts

� Access to a shared resource allows:
� Computation speed-up 
� Increased data availability
� Enhanced reliability



PerLab

Protection System

� Protection refers to a mechanism for controlling 
access by programs, processes, or users to both 
system and user resources.system and user resources.

� The protection mechanism must: 
� distinguish between authorized and unauthorized usage.

� specify the controls to be imposed.
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� specify the controls to be imposed.

� provide a means of enforcement.
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Simple Structure 

� MS-DOS – written to provide the most functionality 
in the least space

Not divided into modules� Not divided into modules

� Although MS-DOS has some structure, its interfaces 
and levels of functionality are not well separated
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MS-DOS Layer Structure
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Layered Approach

� The operating system is divided into a number of 
layers (levels), each built on top of lower layers

The bottom layer (layer 0), is the hardware� The bottom layer (layer 0), is the hardware

� the highest (layer N) is the user interface.

� Each layer uses functions (operations) and 
services of only lower-level layers
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Traditional UNIX System Structure
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UNIX

� UNIX – limited by hardware functionality, the 
original UNIX operating system had limited 
structuring.  structuring.  

� The UNIX OS consists of two separable parts
� Systems programs

� The kernel
�Consists of everything below the system-call interface 

and above the physical hardware
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and above the physical hardware

�Provides the file system, CPU scheduling, memory 
management, and other operating-system functions; a 
large number of functions for one level
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Layered Operating System
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Microkernel System Structure 

� Moves as much from the kernel into “user” space

� Communication takes place between user 
modules using message passingmodules using message passing

� Benefits:
� Easier to extend a microkernel

� Easier to port the operating system to new architectures

� More reliable (less code is running in kernel mode)
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� More secure

� Detriments:
� Performance overhead of user space to kernel space 

communication
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Modules

� Most modern operating systems implement kernel 
modules

Uses object-oriented approach� Uses object-oriented approach

� Each core component is separate

� Each talks to the others over known interfaces

� Each is loadable as needed within the kernel

� Overall, similar to layers but with more flexibility
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� Overall, similar to layers but with more flexibility
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Solaris Modular Approach
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Mac OS X Structure
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Mac OS X Structure (cont’d)

� Mach Micro-kernel is responsible for
� CPU scheduling

� Memory management

� Inter-process communication (IPC)

� Remote procedure calls (RPC)

� BSD kernel provides
� CLI User Interface
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� CLI User Interface

� File manipulation services

� Networking services

� POSIX API (including Pthreads)



PerLab

Overview

� Preliminary Concepts

� Services

� System Calls

� System Programs

� Internal Structure

� System Boot

62Basic Concepts



PerLab

System Boot

� Operating system must be made available to 
hardware so hardware can start it

� Bootstrap loader� Bootstrap loader
� locates the kernel, loads it into memory, and starts it

� When power initialized on system, execution starts at a 
fixed memory location
� firmware used to store the initial boot code (ROM does not need 

to be initialized and is immune to viruses)

Small computers store the entire operating system in ROM 
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�Small computers store the entire operating system in ROM 
(EPROM)

� Two-Step bootstrap
� boot block at fixed location loads bootstrap loader



PerLab

Disk Organization

� Il disco può essere suddiviso in partizioni 
ognuna contenente un proprio file system

Il partizionamento del disco avviene mediante � Il partizionamento del disco avviene mediante 
la formattazione di alto livello

Tabella delle
Partizioni Partizioni

Disco
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MBR

Blocco di
avvio

Super
blocco

Gestione
blocchi liberi

I-node
Directory
Radice

File e
Directory
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Disk Organization

� MBR (Master Boot Record)
� Contiene programma di avvio

� La fine del MBR contiene la tabella delle partizioni� La fine del MBR contiene la tabella delle partizioni

� Tabella delle partizioni
� Contiene punto di inizio e fine di ogni partizione

� Una sola partizione è marcata come attiva

� E’ la partizione da cui verrà caricato il SO

65Basic Concepts

MBR

Tabella delle
Partizioni Partizioni

Disco
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Disk Organization

� Blocco di avvio
� Contiene semplice eseguito in fase di bootstrap e serve a caricare il 

kernel
� Ogni partizione contiene il Blocco di Avvio anche se non contiene il SO 

(potrebbe contenerne uno)(potrebbe contenerne uno)

� Superblocco
� Contiene informazioni sul file system

� Numero magico che identifica il FS
� Numero di blocchi del FS
� …

� Gestione per lo spazio libero
� Strutture dati per la gestione dei blocchi liberi
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� Strutture dati per la gestione dei blocchi liberi

� I-node
� Nei SO che utilizzano gli i-node questi sono raggruppati in unaparte del 

disco

� Directory radice
� File e directory
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Two-Step Bootstrap (Windows 2000)

� Esecuzione del programma di avvio in ROM
�Diagnosi

�Caricamento del MBR�Caricamento del MBR

� Esecuzione del codice di avvio contenuto nel 
MBR

�Localizza la partizione attiva dalla tabella delle partizioni

�Legge il primo blocco (blocco di avvio) e lo esegue

� Esecuzione del codice nel Blocco di Avvio
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� Esecuzione del codice nel Blocco di Avvio
�Localizza il kernel nella partizione attiva

�Carica in memoria il kernel

�Cede il controllo al kernel
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Questions?
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