
1. Basic Concepts

Giuseppe Anastasi
g.anastasi@iet.unipi.it

Pervasive Computing & Networking Lab. (PerLab)
Dept. of Information Engineering, University of Pisa

1. Basic Concepts

Dept. of Information Engineering, University of Pisa

PerLab

Based on original slides by Silberschatz, Galvin and Gagne

PerLab

Overview

� Preliminary Concepts

� Services

� System Calls

� System Programs

� Internal Structure

� System Boot

2Basic Concepts

PerLab

Overview

� Preliminary Concepts

� Services

� System Calls

� System Programs

� Internal Structure

� System Boot

3Basic Concepts

PerLab

What is an Operating System?

� A program that acts as an intermediary between
a user of a computer and the computer
hardware.hardware.

� Operating system goals:
� Provide an environment for executing user programs

and making solving user problems easier.

4Basic Concepts

and making solving user problems easier.

� Make the computer system convenient to use.

� Use the computer hardware in an efficient manner.

PerLab

Abstract View

5Basic Concepts

PerLab

Mono -programmed Systems

6Basic Concepts

PerLab

Multi-programmed Systems

7Basic Concepts

PerLab

Features for Multiprogramming

�Memory management

� the system must allocate the memory to
several jobs.

�CPU scheduling

� the system must choose among several jobs
ready to run.

8Basic Concepts

�Device management

� Allocation of devices to concurrent processes

PerLab

System Classification (1)

� Batch systems
� No interaction with the user

� Interactive systems� Interactive systems
� The user interacts with the systems during process

execution

� Response times should be short

� Real time systems
� Soft real-time systems

9Basic Concepts

� Soft real-time systems

� Hard real-time systems

� General-purpose systems
� The system has to manage a mix of batch, interactive

and soft real-time processes

PerLab

System Classification (2)

� Mainframe systems

� Desktop systems

� Server systems

� Parallel systems

� Distributed systems

� Cluster systems

10Basic Concepts

� Cluster systems

� Embedded systems

� Hand-held systems

PerLab

Goals of an Operating System

� Make the computer easy to use (e.g. PC)

� Optimize the computational resources (e.g.
mainframe) mainframe)

� Optimize shared resources (e.g., distributed
systems)

� Make the computer easy to use and optimize
energetic resources (e.g., handheld
computers)

11Basic Concepts

computers)
� …

Convenience vs. efficiency

PerLab

Overview

� Preliminary Concepts

� Services

� System Calls

� System Programs

� Internal Structure

� System Boot

12Basic Concepts

PerLab

Operating System Services

� User Interface
�Command-Line (CLI)

�Graphics User Interface (GUI)

Batch�Batch

� Program execution
�system capability to load a program into memory and to run

it.

� I/O operations
since user programs cannot execute I/O operations directly,

13Basic Concepts

�since user programs cannot execute I/O operations directly,
the operating system must provide some means to perform
I/O.

� File-system manipulation
�program capability to read, write, create, and delete files.

PerLab

Operating System Services

� Communications
� exchange of information between processes on the

same computer or on different systems tied together by same computer or on different systems tied together by
a network.

� Implemented via shared memory or message passing.

� Error detection
� ensure correct computing by detecting errors in the CPU

and memory hardware, in I/O devices, or in user

14Basic Concepts

and memory hardware, in I/O devices, or in user
programs.

PerLab

Operating System Services

Additional functions exist not for helping the user, but
rather for ensuring efficient system operations.

� Resource allocation
� Many types of resources - Some (such as CPU cycles, main

memory, and file storage) may have special allocation code,
others (such as I/O devices) may have general request and
release code

� Accounting
� To keep track of which users use how much and what kinds of

computer resources

� Protection and security

15Basic Concepts

� Protection and security
� Protection involves ensuring that all access to system resources

is controlled
� Security of the system from outsiders requires user

authentication, extends to defending external I/O devices from
invalid access attempts

PerLab

A View of OS Services

16Basic Concepts

PerLab

User Interface

� Command Line Interface (CLI) – Command
Interpreter

Sometimes implemented in kernel, sometimes by � Sometimes implemented in kernel, sometimes by
systems program
�Sometimes multiple flavors implemented – shells

� Primarily fetches a command from user and executes it
�Sometimes commands built-in, sometimes just names of

programs

17Basic Concepts

programs

– If the latter, adding new features doesn’t require shell modification

PerLab
Graphic User Interface - GUI

� User-friendly desktop metaphor interface
� Usually mouse, keyboard, and monitor

Icons represent files, programs, actions, etc� Icons represent files, programs, actions, etc

� Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open
directory (known as a folder)

� Invented at Xerox PARC

� Many systems now include both CLI and GUI
interfaces

18Basic Concepts

interfaces
� Microsoft Windows is GUI with CLI “command” shell

� Apple Mac OS X as “Aqua” GUI interface with UNIX kernel
underneath and shells available

� Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

PerLab

Bourne Shell Command Interpreter

19Basic Concepts

PerLab

The Mac OS X GUI

20Basic Concepts

PerLab

Overview

� Preliminary Concepts

� Services

� System Calls

� System Programs

� Internal Structure

� System Boot

21Basic Concepts

PerLab

System Calls

� Programming interface to the services provided by the OS

� Typically written in a high-level language (C or C++)

� Mostly accessed by programs via a high-level Application � Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use
� Win32 API for Windows

� POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X)

� Java API for the Java virtual machine (JVM)

22Basic Concepts

� Why use APIs rather than system calls?
� Portability

� Usability (API functions are typically easier to use than system calls)

PerLab

Example of System Calls

� System call sequence to copy the contents of one
file to another file

23Basic Concepts

PerLab

Example of Standard API

� Consider the ReadFile() function in the Win32 API-- a
function for reading from a file

� Description of the parameters passed to ReadFile()

24Basic Concepts

� HANDLE file—the file to be read

� LPVOID buffer—a buffer where the data will be read into and written from

� DWORD bytesToRead—the number of bytes to be read into the buffer

� LPDWORD bytesRead—the number of bytes read during the last read

� LPOVERLAPPED ovl—indicates if overlapped I/O is being used

PerLab

System Call Implementation

� Typically, a number associated with each system call
� The compiler maintains a table of system calls

� The system call interface invokes intended system call in � The system call interface invokes intended system call in
OS kernel and returns status of the system call and any
return values

� The caller needs know nothing about how the system call is
implemented
� Just needs to obey API and understand what OS will do as a result

call

25Basic Concepts

call

� Most details of OS interface are hidden from programmer by API

� Managed by run-time support library (set of functions built into libraries
included with compiler)

PerLab
API–System Call–OS Relationship

26Basic Concepts

PerLab
Transition from User to Kernel Mode

27Basic Concepts

PerLab
Standard C Library Example

� C program invoking printf() library call, which
calls write() system call

28Basic Concepts

PerLab

System Call Parameter Passing

� Often, more information is required than simply identity of
desired system call
� Exact type and amount of information vary according to OS and call

� Three general methods used to pass parameters to the OS� Three general methods used to pass parameters to the OS
� Simplest: pass the parameters in registers

� In some cases, may be more parameters than registers

� Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register
� This approach taken by Linux and Solaris

� Parameters placed, or pushed, onto the stack by the program and

29Basic Concepts

� Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

� Block and stack methods do not limit the number or length of
parameters being passed

PerLab

Parameter Passing via Table

30Basic Concepts

PerLab

Types of System Calls

� Process control

� File management

� Device management

� Information maintenance

� Communications

31Basic Concepts

PerLab

Process control

� create_process()

� end(), abort()

� load()

� execute()

� get_process_attribute(), set_process_attribute()

� wait(time), wait(event)

� signal(event)

32Basic Concepts

� signal(event)

PerLab

File Manipulation

� create_file(), delete_process()

� open(), close()

� read(), write(),

� get_file_attributes(), set_file_attributes()

33Basic Concepts

PerLab

Device Management

� request_device(), release_device()

� read(), write()� read(), write()

� get_device_attribute(), set_device_attribute()

� logical_attach_device(), logical_detach_device()

34Basic Concepts

PerLab

System Calls (5)

� get_time(), get_date()

� set_time(), set_date()

get_process_attribute(), set_process_attribute()� get_process_attribute(), set_process_attribute()

� get_file_attribute(), set_file_attribute()

� get_device_attribute(), set_device_attribute()

35Basic Concepts

PerLab

Communications

� create_connection(),

� delete_connection()

� send(msg), receive(msg)

36Basic Concepts

PerLab

Examples of Windows/Unix System Calls

37Basic Concepts

PerLab

Overview

� Preliminary Concepts

� Services

� System Calls

� System Programs

� Internal Structure

� System Boot

38Basic Concepts

PerLab

System Programs

� System programs provide a convenient environment
for program development and execution. They can be
divided into:divided into:
� File manipulation

� Status information

� File modification

� Programming language support

� Program loading and execution

� Communications

39Basic Concepts

� Communications

� Application programs

� Most users’ view of the operation system is defined by
system programs, not the actual system calls

PerLab

System Programs

� Provide a convenient environment for program
development and execution
� Some of them are simply user interfaces to system calls; others are

considerably more complex

� File management
� Create, delete, copy, rename, print, dump, list, and generally

manipulate files and directories

� Status information
� Some ask the system for info - date, time, amount of available

40Basic Concepts

� Some ask the system for info - date, time, amount of available
memory, disk space, number of users

� Others provide detailed performance, logging, and debugging
information

� Typically, these programs format and print the output to the terminal
or other output devices

PerLab

System Programs (cont’d)

� File modification
� Text editors to create and modify files

� Special commands to search contents of files or perform
transformations of the texttransformations of the text

� Programming-language support
� Compilers, assemblers, debuggers and interpreters sometimes

provided

� Program loading and execution
� Absolute loaders, relocatable loaders, linkage editors, and overlay-

loaders, debugging systems for higher-level and machine language

41Basic Concepts

loaders, debugging systems for higher-level and machine language

� Communications
� Allow users to send messages to one another’s screens, browse

web pages, send electronic-mail messages, log in remotely, transfer
files from one machine to another

PerLab

Overview

� Preliminary Concepts

� Services

� System Calls

� System Programs

� Internal Structure

� System Boot

42Basic Concepts

PerLab

Common System Components

� User Interface

� Process Manager� Process Manager

� Memory Manager

� File Manager

� I/O System Manager

� Secondary Memory Manager

43Basic Concepts

� Secondary Memory Manager

� Networking

� Protection System

PerLab

Process Manager

� The process manager is responsible for the
following activities
� Process creation and deletion.� Process creation and deletion.

� process suspension and resumption.

� Provision of mechanisms for:
�process synchronization

�process communication

44Basic Concepts

PerLab

Memory Manager

� Memory is a large array of words or bytes, each
with its own address.

� It is a repository of quickly accessible data shared � It is a repository of quickly accessible data shared
by the CPU and I/O devices.

� Main memory is a volatile storage device.

� The memory manager is responsible for the
following activities
� Keep track of which parts of memory are currently

45Basic Concepts

� Keep track of which parts of memory are currently
being used and by whom.

� Allocate and deallocate memory space as needed.

PerLab

File Manager

� A file is a collection of related information defined
by its creator.

The file manager is responsible for the following � The file manager is responsible for the following
activities:
� File creation and deletion.
� Directory creation and deletion.
� Support of primitives for manipulating files and

directories.

46Basic Concepts

� Mapping files onto secondary storage.
� File backup on stable (nonvolatile) storage media.

PerLab

I/O System Manager

� The I/O system consists of:

� A general device-driver interface� A general device-driver interface

� Drivers for specific hardware devices

� A buffer-caching system

47Basic Concepts

PerLab

Secondary -Storage Manager

� Main memory (primary storage) is volatile and
too small to accommodate all data and
programs permanently

� The computer system must provide secondary
storage as a permanent storage system.
� Typically Disks

� The operating system is responsible for the
following activities in connection with disk
management:

48Basic Concepts

management:
� Free space management
� Storage allocation
� Disk scheduling

PerLab

Networking (Distributed Systems)

� A distributed system is a collection processors that
do not share memory or a clock. Each processor
has its own local memory.has its own local memory.

� The processors in the system are connected
through a communication network.

� Communication takes place using a protocol.
� A distributed system provides user access to

various system resources.
Access to a shared resource allows:

49Basic Concepts

� Access to a shared resource allows:
� Computation speed-up
� Increased data availability
� Enhanced reliability

PerLab

Protection System

� Protection refers to a mechanism for controlling
access by programs, processes, or users to both
system and user resources.system and user resources.

� The protection mechanism must:
� distinguish between authorized and unauthorized usage.

� specify the controls to be imposed.

50Basic Concepts

� specify the controls to be imposed.

� provide a means of enforcement.

PerLab

Simple Structure

� MS-DOS – written to provide the most functionality
in the least space

Not divided into modules� Not divided into modules

� Although MS-DOS has some structure, its interfaces
and levels of functionality are not well separated

51Basic Concepts

PerLab

MS-DOS Layer Structure

52Basic Concepts

PerLab

Layered Approach

� The operating system is divided into a number of
layers (levels), each built on top of lower layers

The bottom layer (layer 0), is the hardware� The bottom layer (layer 0), is the hardware

� the highest (layer N) is the user interface.

� Each layer uses functions (operations) and
services of only lower-level layers

53Basic Concepts

PerLab
Traditional UNIX System Structure

54Basic Concepts

PerLab

UNIX

� UNIX – limited by hardware functionality, the
original UNIX operating system had limited
structuring. structuring.

� The UNIX OS consists of two separable parts
� Systems programs

� The kernel
�Consists of everything below the system-call interface

and above the physical hardware

55Basic Concepts

and above the physical hardware

�Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

PerLab

Layered Operating System

56Basic Concepts

PerLab

Microkernel System Structure

� Moves as much from the kernel into “user” space

� Communication takes place between user
modules using message passingmodules using message passing

� Benefits:
� Easier to extend a microkernel

� Easier to port the operating system to new architectures

� More reliable (less code is running in kernel mode)

57Basic Concepts

� More secure

� Detriments:
� Performance overhead of user space to kernel space

communication

PerLab

Modules

� Most modern operating systems implement kernel
modules

Uses object-oriented approach� Uses object-oriented approach

� Each core component is separate

� Each talks to the others over known interfaces

� Each is loadable as needed within the kernel

� Overall, similar to layers but with more flexibility

58Basic Concepts

� Overall, similar to layers but with more flexibility

PerLab

Solaris Modular Approach

59Basic Concepts

PerLab

Mac OS X Structure

60Basic Concepts

PerLab

Mac OS X Structure (cont’d)

� Mach Micro-kernel is responsible for
� CPU scheduling

� Memory management

� Inter-process communication (IPC)

� Remote procedure calls (RPC)

� BSD kernel provides
� CLI User Interface

61Basic Concepts

� CLI User Interface

� File manipulation services

� Networking services

� POSIX API (including Pthreads)

PerLab

Overview

� Preliminary Concepts

� Services

� System Calls

� System Programs

� Internal Structure

� System Boot

62Basic Concepts

PerLab

System Boot

� Operating system must be made available to
hardware so hardware can start it

� Bootstrap loader� Bootstrap loader
� locates the kernel, loads it into memory, and starts it

� When power initialized on system, execution starts at a
fixed memory location
� firmware used to store the initial boot code (ROM does not need

to be initialized and is immune to viruses)

Small computers store the entire operating system in ROM

63Basic Concepts

�Small computers store the entire operating system in ROM
(EPROM)

� Two-Step bootstrap
� boot block at fixed location loads bootstrap loader

PerLab

Disk Organization

� Il disco può essere suddiviso in partizioni
ognuna contenente un proprio file system

Il partizionamento del disco avviene mediante � Il partizionamento del disco avviene mediante
la formattazione di alto livello

Tabella delle
Partizioni Partizioni

Disco

64Basic Concepts

MBR

Blocco di
avvio

Super
blocco

Gestione
blocchi liberi

I-node
Directory
Radice

File e
Directory

PerLab

Disk Organization

� MBR (Master Boot Record)
� Contiene programma di avvio

� La fine del MBR contiene la tabella delle partizioni� La fine del MBR contiene la tabella delle partizioni

� Tabella delle partizioni
� Contiene punto di inizio e fine di ogni partizione

� Una sola partizione è marcata come attiva

� E’ la partizione da cui verrà caricato il SO

65Basic Concepts

MBR

Tabella delle
Partizioni Partizioni

Disco

PerLab

Disk Organization

� Blocco di avvio
� Contiene semplice eseguito in fase di bootstrap e serve a caricare il

kernel
� Ogni partizione contiene il Blocco di Avvio anche se non contiene il SO

(potrebbe contenerne uno)(potrebbe contenerne uno)

� Superblocco
� Contiene informazioni sul file system

� Numero magico che identifica il FS
� Numero di blocchi del FS
� …

� Gestione per lo spazio libero
� Strutture dati per la gestione dei blocchi liberi

66Basic Concepts

� Strutture dati per la gestione dei blocchi liberi

� I-node
� Nei SO che utilizzano gli i-node questi sono raggruppati in unaparte del

disco

� Directory radice
� File e directory

PerLab

Two-Step Bootstrap (Windows 2000)

� Esecuzione del programma di avvio in ROM
�Diagnosi

�Caricamento del MBR�Caricamento del MBR

� Esecuzione del codice di avvio contenuto nel
MBR

�Localizza la partizione attiva dalla tabella delle partizioni

�Legge il primo blocco (blocco di avvio) e lo esegue

� Esecuzione del codice nel Blocco di Avvio

67Basic Concepts

� Esecuzione del codice nel Blocco di Avvio
�Localizza il kernel nella partizione attiva

�Carica in memoria il kernel

�Cede il controllo al kernel

PerLab

Questions?

68Basic Concepts

