
Processes and Threads

Giuseppe Anastasi
g.anastasi@iet.unipi.it

Pervasive Computing & Networking Lab. (PerLab)
Dept. of Information Engineering, University of Pisa

PerLab

Based on original slides by Silberschatz, Galvin and Gagne

PerLab

Overview

� Processes

� Threads

� CPU Scheduling

2Processes & Threads

PerLab

Overview

� Processes

� Threads

� CPU Scheduling

3Processes & Threads

PerLab

Process Concept

� Process – a program in execution;

� Program is a passive entity (file on disk storage)

� Process is an active entity

� More processes can refer to the same program

4Processes & Threads

Two instances of the same program (e.g., MS Word)
have the same code section but, in general, different
current activities

PerLab

Process Concept (cont’d)

� A process includes
� Code section

� Current activity

� Current activity is defined by
� Program Counter (IP Register)

5Processes & Threads

� Program Counter (IP Register)

� CPU Registers

� Stack

� Data Section (global variables)

� …

PerLab

Process Control Block (PCB)

6Processes & Threads

PerLab

Process Control Block (PCB)

Information associated with each process.

� Process state

� Program counter

� CPU registers

7Processes & Threads

� CPU registers

� CPU scheduling information

� Memory-management information

� Accounting information

� I/O status information

PerLab

Process Creation

� Processes need to be created

� Processes are created by other processes

� System call create_process

� Parent process create children processes

� which, in turn create other processes, forming a tree of processes.

Resource sharing

8Processes & Threads

� Resource sharing

� Parent and children share all resources.

� Children share subset of parent’s resources.

� Parent and child share no resources.

� Execution

� Parent and children execute concurrently.

� Parent waits until children terminate.

PerLab

Process Creation (Cont.)

� Address space

� Child duplicate of parent.

� Child has a program loaded into it.

� UNIX examples

9Processes & Threads

� UNIX examples

� Each process is identified by the process identifier

� fork system call creates new process

� exec system call used after a fork to replace the

process’ memory space with a new program.

PerLab

Process Creation in UNIX

include <iostream.h>
void main(int argc, char* argv[]) {

int pid;
pid=fork(); /* genera un nuovo processo */
if(pid<0) { /* errore */

cout << “Errore nella creazione del processo” << "\n\n”;
exit(-1);

}

10Processes & Threads

}
else if(pid==0) { /* processo figlio */

execlp(“/bin/ls”, “ls”, NULL);
}
else { /* processo genitore */

wait(NULL);
cout << “Il processo figlio ha terminato” << "\n\n”;
exit(0);

}
}

PerLab

Process Termination

� Process terminates when executing the last
statement

� The last statement is usually exit
� Process’ resources are deallocated by operating

system.

� Parent may terminate execution of children

11Processes & Threads

� Parent may terminate execution of children
processes (abort).
� Child has exceeded allocated resources.

� Task assigned to child is no longer required.

� Parent is exiting.
�Operating system does not allow child to continue if its parent

terminates.

�Cascading termination.

PerLab
Process Evolution

As a process executes, it changes state

� new : The process is being created.

� running : Instructions are being executed.

� waiting : The process is waiting for some event to occur.

12Processes & Threads

� waiting : The process is waiting for some event to occur.

� ready : The process is waiting to be assigned to a

process.

� terminated : The process has finished execution.

PerLab

Diagram of Process State

13Processes & Threads

PerLab

Context Switch

� When CPU switches to another process, the
system must save the state of the old process and
load the saved state for the new process.

� Context-switch time is overhead

14Processes & Threads

� the system does no useful work while switching.

PerLab

CPU Scheduler

� Selects from among the processes in memory that
are ready to execute, and allocates the CPU to
one of them

� CPU scheduling decisions may take place when a
process:

15Processes & Threads

� Terminates

� Switches from running to waiting state

� Switches from running to ready state

� Switches from waiting to ready

� Scheduling under 1 and 2 is nonpreemptive

� All other scheduling is preemptive

PerLab

Overview

� Processes

� Threads

� CPU Scheduling

16Processes & Threads

PerLab

Process

� Resource ownership
� A process is an entity with some allocated resources

�Main memory

� I/O devices

�Files

�…..

17Processes & Threads

� Scheduling/execution
� A process can be viewed as a sequence of states

(execution path)

� The execution path of a process may be interleaved
with the execution paths of other process

� The process is the entity than can be scheduled for
execution

PerLab

Processes and Threads

� In traditional operating systems the two concepts
are not differentiated

� In modern operating systems
� Process : unit of resource ownership

� Thread : unit of scheduling

18Processes & Threads

� Thread (Lightweight Process)
� Threads belonging to the same process share the

same resources (code, data, files, I/O devices, …)

� Each thread has its own
�Thread execution state (Running, Ready, …)

�Context (Program Counter, Registers, Stack, …)

PerLab

Single and Multithreaded Processes

19Processes & Threads

PerLab
Multithreaded Server Architecture

20Processes & Threads

PerLab

� Responsiveness

� An interactive application can continue its execution even if a part
of it is blocked or is doing a very long operation

� Resource Sharing

� Thread performing different activity within the same application
can share resources

Benefits

21Processes & Threads

can share resources

� Economy

� Thread creation management is much easier than process
creation and management

� Utilization of Multiple Processor Architectures

� Different threads within the same application can be executed
concurrently over different processors in MP systems

PerLab

Execution on a Single -core System

22Processes & Threads

PerLab

Execution on a Multi-core System

23Processes & Threads

PerLab

User Threads

� Thread management done by user-level threads
library

� Three primary thread libraries:
� POSIX Pthreads

24Processes & Threads

� POSIX Pthreads

� Win32 threads

� Java threads

PerLab

Kernel Threads

� Supported by the Kernel

� Examples
� Windows XP/2000

� Mac OS X

25Processes & Threads

� Mac OS X

� Linux

� Solaris

� Tru64 UNIX (Digital UNIX)

PerLab

Multithreading Models

�Many-to-One

�One-to-One

26Processes & Threads

�Many-to-Many

PerLab

Many-to-One

� Many user-level threads mapped to single kernel
thread

� Examples:
� Solaris Green Threads

� GNU Portable Threads

27Processes & Threads

� GNU Portable Threads

PerLab

Many-to-One Model

28Processes & Threads

PerLab

One-to-One

� Each user-level thread maps to kernel thread

� Examples
� Windows NT/XP/2000

� Linux

Solaris 9 and later

29Processes & Threads

� Solaris 9 and later

PerLab

One-to-one Model

30Processes & Threads

PerLab

Many-to-Many Model

� Allows many user level threads to be
mapped to many kernel threads

� Allows the operating system to create a
sufficient number of kernel threads

31Processes & Threads

sufficient number of kernel threads

� Solaris prior to version 9

� Windows NT/2000 with the ThreadFiber
package

PerLab

Many-to-Many Model

32Processes & Threads

PerLab

Two-level Model

� Similar to M:M, except that it allows a user
thread to be bound to kernel thread

� Examples
IRIX

33Processes & Threads

� IRIX

� HP-UX

� Tru64 UNIX

� Solaris 8 and earlier

PerLab

Two-level Model

34Processes & Threads

PerLab

Thread Libraries

� Thread library provides programmer with API for
creating and managing threads

� Two primary ways of implementing
� Library entirely in user space

� Kernel-level library supported by the OS

35Processes & Threads

� Kernel-level library supported by the OS

PerLab

Pthreads

� May be provided either as user-level or kernel-
level

� A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

� API specifies behavior of the thread library,

36Processes & Threads

� API specifies behavior of the thread library,
implementation is up to development of the library

� Common in UNIX operating systems (Solaris,
Linux, Mac OS X)

PerLab

Java Threads

� Java threads are managed by the JVM

� Typically implemented using the threads model
provided by underlying OS

37Processes & Threads

� Java threads may be created by:
� Extending Thread class

� Implementing the Runnable interface

PerLab

Operating System Examples

� Windows XP Threads

� Linux Thread

38Processes & Threads

PerLab

Windows XP Threads

� Implements the one-to-one mapping, kernel-level

� Each thread contains
� A thread id

� Register set

� Separate user and kernel stacks

� Private data storage area

39Processes & Threads

� Private data storage area

� The register set, stacks, and private storage area
are known as the context of the thread

� The primary data structures of a thread include:
� ETHREAD (executive thread block)

� KTHREAD (kernel thread block)

� TEB (thread environment block)

PerLab

Windows XP Threads

40Processes & Threads

PerLab

Linux Threads

� Linux refers to them as tasks rather than threads

� Thread creation is done through clone() system
call

41Processes & Threads

call

� clone() allows a child task to share the address
space of the parent task (process)

PerLab

Linux Threads

42Processes & Threads

PerLab

Overview

� Processes

� Threads

� CPU Scheduling

43Processes & Threads

PerLab

CPU Scheduler

� Selects from among the ready processes and
allocates the CPU to one of them.

� CPU scheduling decisions may take place in
different situations
� Non-preemptive scheduling

44Processes & Threads

� The running process terminates

� The running process performs an I/O operation or waits for an
event

� Preemptive scheduling
� The running process has exhausted its time slice

� A process A transits from blocked to ready and is considered
more important than process B that is currently running

� …

PerLab

Dispatcher

� Dispatcher module gives control of the CPU to the
process selected by the scheduler; this involves:

� Context Switch

� Switching to user mode

Jumping to the proper location in the user program to

45Processes & Threads

� Jumping to the proper location in the user program to
restart that program

� Dispatch latency

� time it takes for the dispatcher to stop one process and
start another running.

� should be minimized

PerLab

Type of scheduling

� Batch Systems

� Maximize the resource utilization

� Interactive Systems

� Minimize response times

46Processes & Threads

� Real-Time Systems

� Meet Temporal Constraints

PerLab

Objectives

� General
� Fairness
� Load Balancing (multi-processor systems)

� Batch Systems
� CPU utilization (% of time the CPU is executing processes)
� Throughput (# of processes executed per time unit)

47Processes & Threads

� Turnaround time (amount of time to execute a particular process)

� Interactive Systems
� Response time

� amount of time it takes from when a request was submitted until the first
response is produced, not output

� Real-Time Systems
� Temporal Constraints

PerLab

Scheduling Algorithms

� Batch Systems

� First-Come First-Served (FCFS)

� Shortest Job First (SJF), Shortest Remaining Job First
(SRJF)

� Approximated SJF

48Processes & Threads

� Approximated SJF

� Interactive Systems

� Round Robin (RR)

� Priority-based

� Soft Real-Time Systems

� Priority-based?

PerLab

General-purpose systems

� General-purpose systems (e.g., PCs) typically
manage different types of processes

� Batch processes

� Interactive processes

user commands with different latency requirements

49Processes & Threads

�user commands with different latency requirements

� Soft real-time processes

�multimedia applications

� Which is the most appropriate scheduling in such
a context?

PerLab

Multi-level Ready Queue

� Ready queue is partitioned into separate queues
� foreground (interactive)

� background (batch)

� Each queue has its own scheduling algorithm
� foreground – RR

background – FCFS

50Processes & Threads

� background – FCFS

� Scheduling must be done between the queues
� Fixed priority scheduling

�Serve all from foreground then from background. Possibility of
starvation.

� Time slice
�each queue gets a certain amount of CPU time (i.e., 80% to

foreground in RR, 20% to background in FCFS)

PerLab

Multilevel Queue Scheduling

51Processes & Threads

PerLab

Multilevel Feedback Queue

� A process can move between the various
queues; aging can be implemented this way

� Multilevel-feedback-queue scheduler defined by
the following parameters:
� number of queues

52Processes & Threads

� number of queues

� scheduling algorithm for each queue

� method used to determine when to upgrade a process

� method used to determine when to demote a process

� method used to determine which queue a process will
enter when that process needs service

PerLab

Operating System Examples

� Windows XP scheduling

� Linux scheduling

53Processes & Threads

PerLab

Windows XP Scheduling

� Thread scheduling based on
� Priority

� Preemption

� Time slice

� A thread is execute until one of the following event

54Processes & Threads

� A thread is execute until one of the following event
occurs
� The thread has terminated its execution

� The thread has exhausted its assigned time slice

� The has executed a blocking system call

� A thread higher-priority thread has entered the ready
queue

PerLab

Kernel Priorities

� Kernel priority scheme: 32 priority levels
� Real-time class (16-31)

� Variable class (1-15)

� Memory management thread (0)

55Processes & Threads

� A different queue for each priority level
� Queues are scanned from higher levels to lower levels

� When no thread is found a special thread (idle thread) is
executed

PerLab

Win32 API priorities

� API Priority classes
� REALTIME_PRIORITY_CLASS � Real-time Class

� HIGH_PRIORITY_CLASS � Variable Class

� ABOVE_NORMAL_PRIORITY_CLASS � Variable Class

� NORMAL_PRIORITY_CLASS � Variable Class

� BELOW_NORMAL_PRIORITY_CLASS � Variable Class

� IDLE_PRIORITY_CLASS � Variable Class

56Processes & Threads

� Relative Priority
� TIME_CRITICAL

� HIGHEST

� ABOVE_NORMAL

� NORMAL

� BELOW_NORMAL

� LOWEST

� IDLE

PerLab

Windows XP Priorities

57Processes & Threads

Default Base Priority

PerLab

Class Priority Management

� A thread is stopped as soon as its time slice is
exhausted

� Variable Class
� If a thread stops because time slice is exhausted, its

priority level is decreased

� If a thread exits a waiting operation, its priority level is

58Processes & Threads

� If a thread exits a waiting operation, its priority level is
increased
�waiting for data from keyboard, mouse � significant increase

�Waiting for disk operations � moderate increase

� Background/Foreground processes
� The time slice of the foreground process is increased

(typically by a factor 3)

PerLab

Linux Scheduling

� Task scheduling based on
� Priority levels

� Preemption

� Time slices

� Two priority ranges: real-time and time-sharing

59Processes & Threads

� Two priority ranges: real-time and time-sharing
� Real-time range from 0 to 99

� Nice range from 100 to 140

� The time-slice length depends on the priority level

PerLab

Priorities and Time -slice length

60Processes & Threads

PerLab

RunQueue

� The runqueue consists of two different arrays
� Active array

� Expired array

61Processes & Threads

PerLab

Priority Calculation

� Real time tasks have static priority

� Time-sharing tasks have dynamic priority
� Based on nice value + 5

� + 5 depends on how much the task is interactive
�Tasks with low waiting times are assumed to be scarcely

62Processes & Threads

�Tasks with low waiting times are assumed to be scarcely
interactive

�Tasks with large waiting times are assumed to be highly
interactive

� Priority re-computation is carried out every time
a task has exhausted its time slice

PerLab

Questions?

63Processes & Threads

