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Group communication has proven to be a powerful paradigm for designing applications and services
in Wireless Sensor Networks (WSNs). Given the tight interaction between WSNs and the physical
world, a security infringement may translate into a safety infringement. Therefore, in order to fully
exploit the group communication paradigm we need to secure it. Traditionally, this requirement
has been formalized in terms of backward and forward security and fulfilled by means of rekeying.
In WSNs, group rekeying becomes particularly a complex problem because communication takes
place over an easily-accessible wireless medium and because sensor nodes have severe limitations
in terms of computing, storage, energy and tamper-resistance capabilities for cost reasons.

In this paper we present a Lightweight Authenticated ReKeying (LARK) scheme for clustered
WSNs. LARK guarantees backward and forward security, is scalable in terms of communica-
tion overhead and e�cient in terms of computing overhead for key authentiticy verification.
LARK achieves security, e�ciency, and scalability by exploiting two basic well-known mecha-
nisms, namely key graph and key chain, and integrating them in an original way. LARK supports
a general group model where groups can be hierachical and partially overlapping. In contrast to
other WSN group rekeying schemes, LARK considers grouping a tool for designing and imple-
menting applications and services rather than for network management. Consequently, LARK
receives a group topology reflecting the application needs and manages rekeying at single-group
level. In the paper we describe LARK, formally argue that it meets the backward and forward se-
curity requirements, and, finally, evaluate its performance in terms of communication, computing
and storage overhead in limited-resources sensor nodes.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—Security and
protection; K.6.m [Management of Computing and Information Systems]: Miscellaneous—Security

General Terms: Algorithms, Design, Security

Additional Key Words and Phrases: Authentication, key management, lightweight security, sensor
networks

1. INTRODUCTION

The group communication model has proven to be a suitable and e↵ective paradigm to design
and implement applications and services in WSNs. Group communication naturally supports
and promotes in-network processing , a fundamental technique for elaborating the wealth of data
provided by WSNs in an e�cient and scalable way [Intanagonwiwat et al. 2000]. Furthermore,
many WSN applications can be abstracted as pursuit-evasion game (PEG) applications where the
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WSN increases the sensing capabilities of the pursuers [Sinopoli et al. 2003]. In PEG applications,
the group communication model is a natural paradigm [Park and Shin 2004].

Given the tight interaction of WSN with the physical environment, security infringements may
cause safety infringements with possible consequences in terms of damages, injures and, even,
death. Hence, if we wish to exploit the advantages the group communication model brings about
it is crucial to protect communication within groups. The need for secure group communication
is generally formalized in requiring that when a sensor node joins a group, it must not be able
to access group communication prior its joining (backward security) and that when a sensor node
leaves, or is forced to leave, the group, the sensor node must be prevented from accessing any
further group communication (forward security) [Zhou et al. 2005]. These requirements can be
fulfilled by rekeying. Intuitively, a group key is distributed to all group members which use it
to encrypt and decrypt broadcast messages. When a new member joins or a current member
leaves the group, the current group key is revoked and a new one distributed [Zhou et al. 2005].
In such scenario, key revocation has the same level of importance as key distribution. In fact,
compromised sensor nodes have to be logically removed from the network communication and,
usually, the ability to logically remove them translates into the ability to revoke keys [Chan et al.
2005; Wallner et al. 1999]. Actually, if cryptographic algorithms do not expose the secret keys,
then the secret keys can only be compromised by compromising the device itself. It follows that
by revoking all keys of a compromised device, it is possible to remove the logical presence of that
device from the network.

Group rekeying has been largely investigated in traditional networks [Rafaeli and Hutchison
2003; Wong et al. 2000]. However, WSNs pose unique challenges. First of all, unlike traditional
wired networks, an adversary with a simple radio receiver/transmitter can easily eavesdrop as
well as inject/modify packets in a WSN. Second, in order to make WSN economically viable,
sensor nodes are limited in their energy, computation, storage, and communication capabilities.
These constraints exclude any traditional solution based upon public-key encryption, for example.
Furthermore, economical reasons exclude also adequate support for tamper-resistance. Therefore,
the fact that a WSN can be deployed over a large, unattended, possibly hostile area exposes each
individual sensor node to the risk of being compromised.

Several solutions to group rekeying in WSNs have been proposed so far, including [Choudhary
et al. 2007; Eltoweissy et al. 2004; Eltoweissy et al. 2005; Park and Shin 2004; Perrig et al. 2001;
Son et al. 2007; Wang and Ramamurthy 2007; Younis et al. 2006; Zhu et al. 2006]. As a common
denominator, all these systems use grouping as a network topology control technique [Younis et al.
2006]. A WSN typically features a single base station collecting data from many homogeneous
sensors and co-ordinating activities. WSN applications often require only an aggregate value to
be reported to the base station. In this case, sensor nodes in di↵erent regions of the field can
collaborate to aggregate their data and provide more accurate reports about their local regions.
In order to support data aggregation through e�cient network organisation, nodes are partitioned
into a number of small groups called clusters. Each cluster has a coordinator, referred to as a
cluster head, that is responsible for coordinating the nodes within the cluster, and communicating
with the base station and other cluster heads.

An emerging class of decentralised WSN architectures is characterised by multiple base stations,
di↵erent applications on the same hardware, and heterogeneous nodes. These architectures find
their realisation in WSNs with actuation capabilities where nodes are not only capable of sensing
the environment but also acting on it [Akyildiz and Kasimoglu 2004; Sinopoli et al. 2003]. In these
architectures, applications are composed of many collaborating tasks, each a↵ecting only a portion
of the system where the notion of neighbourhood from physical may become logical [Mottola
and Picco 2006a; 2006b]. These applications may range from localisation facilities to control
systems in tunnels or buildings, interactive museums, and home automation [Årzén et al. 2007;
Petriu et al. 2000]. Design and implementation of these applications may benefit from the group
communication paradigm. However, in these applications, group membership may be based on
logical basis rather than physical proximity, and change frequently, perhaps even continuously, as
tied to sensor reading. Groups may be organized hierarchically and rooted at di↵erent collecting
nodes (roots). Furthermore, although groups are logically distinct on service or task basis, they
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may overlap as one or more sensor nodes may concur to implement two or more services or tasks.
As it turns out, clustering is not adequate anymore to capture this richer and more dynamic group
model. In other words, group topology has to be defined according to applicative requirements
rather than by a network management technique.

In this paper we cope with the problem of group rekeying in WSN by considering grouping as
a means to model WSN applications [Akyildiz and Kasimoglu 2004; Park and Shin 2004; Sinopoli
et al. 2003] and consequently, we assume that the group topology is determined and fixed by
the application needs. According to this approach, we consider a WSN where sensor nodes that
cooperate for the same task/service are logically placed in the same group. Several groups may
coexist at the same time, they can partially overlap and be hierarchically organized. Sensor nodes
may join and leave a group dynamically and, possibly, frequently.

With reference to this quite general model, we propose LARK, a group rekeying scheme that
guarantees secure communication at the single group level in highly dynamic WSNs. This is
achieved by assigning every group a secret key, having it shared by all group members, and by
properly revoking and redistributing that group key whenever a member joins or leaves in order
to fulfill the backward and forward security. This reactive approach based on rekeying has the
advantage that a new node can immediately join a group and a compromised member can be
promptly forced to leave as soon as it is discovered. However, the implementation of a reactive
approach in a WSN poses two severe challenges. First, upon receiving new keying material, every
sensor node must be able to immediately and e�ciently verify its authenticity. Unfortunately,
techniques based on public key cryptography, e.g., digital signatures, that are customary used to
achieve broadcast authentication in traditional wired networks, cannot be used. Second, reactive
rekeying may incur a high communication overhead, especially in large and/or dynamic groups.
Therefore, due to the severe resource limitations of sensor nodes, the communication overhead of
the rekeying protocol has to be kept low.

We take up these challenges by proposing a centralized key distribution and revocation scheme
that levers on two basic mechanisms: key-graphs and key-chains. Key-graph is a mechanism to
specify groups that has been originally proposed for conventional wired networks and that allows
us to achieve an e�cient group rekeying protocol [Wong et al. 2000]. Key-chain is an authen-
tication mechanism based on Lamport’s one-time passwords [Lamport 1981] which has already
been profitably employed in WSNs [Park and Shin 2004; Perrig et al. 2001]. We formally prove
that compounding them compounds their strengths by guaranteeing both forward and backward
security. Furthermore, we prove their integration is conducive to improve scalability and e�ciency
of group rekeying in WSNs. Such integration have been proposed in a preliminary work [Dini and
Savino 2006]. Intuitively, the proposed scheme retains the scalability properties of the original pro-
posal [Wong et al. 2000] and makes key authenticity verification more e�cient from two viewpoints:
first, verification is based on symmetric ciphers and hash functions that are orders of magnitude
more computationally e�cient than public-key cryptography; second, key-chain provides “auto-
verifiable” key materials, thus no additional proof of authenticity is necessary so making the size
of rekeying messages smaller. Furthermore, the resulting scheme is scalable because it exhibits
a communication overhead that is between O(n), in the case of a “flat” group [Eschenauer and
Gligor 2003; Park and Shin 2004; Perrig et al. 2001], and O(log n), in the case of a balanced
key hierarchy [Rafaeli and Hutchison 2003; Waldvogel et al. 1999; Wong et al. 2000], with n the
number of sensor nodes. The communication overhead of the proposed scheme depends on the
current group configuration.

The paper is organized as follows. Section 2 gives the problem statement and Section 3 describes
the system architecture. Section 4 introduces key-chains as a basic mechanism for key authenticity
in rekeying. Section 5 explains how LARK performs rekeying after a joining or leaving event in
order to guarantee the forward and backward security. Section 6 presents both a formal security
analysis of LARK and a performance evaluation in terms of computing, communication and storage
overhead. Performance analysis has been carried out by means of a prototype on TinyOS [Hill
et al. 2000] on TMote Sky sensor nodes [Moteiv ; Polastre et al. 2005]. Section 7 discusses related
work. Finally, in Section 8 we make our final considerations.
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2. PROBLEM DEFINITION

A WSN typically features a single base station co-ordinating activities and collecting data from
many homogeneous sensors. Habitat monitoring is a common example application [Mainwaring
et al. 2002]. Several WSN applications require only an aggregate value to be reported to the base
station. In this case, sensor nodes in di↵erent regions of the field can collaborate to aggregate
their data and provide more accurate reports about their local regions. In this network setting,
clustering is an e↵ective network topology control technique to support data aggregation and
increase scalability and lifetime [Younis et al. 2006]. However, clustering is not su�cient to capture
the requirements of the new decentralised architectures that are rapidly emerging and find their
realisation in WSNs with actuation capabilities, referred to as Wireless Sensor and Actor networks
(WSANs) [Akyildiz and Kasimoglu 2004]. In these architectures, the grouping strategy is lead by
application specific requirements rather than the network management level.

In contrast to mainstream WSNs, characterised by a single application gathering and reporting
data, these new decentralised architectures are composed of multiple base stations, di↵erent appli-
cations running on the same hardware, and heterogeneous nodes that not only observe and gather
data from the environment, but are also capable of a↵ecting it by performing a variety of actions.
Actor and sensor nodes may be even integrated in the same node (e.g., robots). Applications
of these architectures range from localisation facilities to control systems in tunnels or buildings,
interactive museums, and home automation [Årzén et al. 2007; Petriu et al. 2000]. They are com-
posed of many collaborating tasks running on the same hardware, each a↵ecting only a portion
of the system. For instance, an application for monitoring and control in tunnels or building can
be decomposed in at least three main tasks, i.e., structural monitoring, environment monitoring,
and response to extreme events such as fire [Dermibas 2005]. To realise the latter functionality,
for instance, the nodes controlling water sprinklers must monitor nearby temperature sensors and
smoke detectors and take appropriate measures when and where needed. Mobile robots equipped
with sensing and actuating capabilities may interact with the surrounding sensor nodes to help
first rescue teams [Årzén et al. 2007]. The application logic now resides in the network: includ-
ing a central base control loop degrades system performance and reliability without any sensible
advantage [Akyildiz and Kasimoglu 2004].

In this class of applications, sensor nodes can be profitably grouped on the basis of application
specific requirements. Sensor nodes may be grouped according to the task they cooperate for.
As di↵erent tasks may use the same sensor nodes, the corresponding groups may overlap. For
instance, the environment monitoring task and the response to extreme events task may use a
common set of temperature sensors. Groups may be further sub-grouped. For instance, sensor
nodes cooperating for a given task may be sub-grouped according to their sensing function, so
including in the same sub-group those sensing the same physical quantity (e.g., light, humidity,
smoke), or geographically, putting those physically “close” in the same sub-group. In addition to
this physical notion of neighbourhood, applications may greatly benefit from a logical one [Mottola
and Picco 2006b]. With logical neighbourhood the set of nodes in the communication range of
a given device are determined by applicative information. For instance, a water sprinkle may
be interested in the sensor nodes that have reported a temperature greater than 100� C and
lying two hops from the sprinkle. The logical neighbourhoods of two water sprinkles may overlap
for reliable coverage purposes. Of course, the resulting hierarchical, multi-rooted group model
with overlapping groups may raise performance and lifetime issues due to the tra�c and energy
necessary for its management. Mottola and Picco have recognised these issues and proposed a novel
routing strategy specifically tailored for the logical neighbourhood programming model [Mottola
and Picco 2006a]. LARK gives a similar contribution in terms of group key management.

LARK assumes a group topology defined by the application level and protect group commu-
nication from an external adversary by letting sensor nodes in the same group share a group-key
to encrypt messages within the group. Hence, anyone that is not part of the group can neither
access nor inject/modify messages. When a sensor node leaves a group, it must be prevented from
accessing the group communication (forward security). When a sensor node joins a group, it must
not be able to decipher previous messages encrypted with an old key even though it has recorded
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 2. Sensor Network Controller WSNC .

them (backward security). In this model, forward and backward security are fulfilled via rekeying,
that is the current group-key is revoked and a new one is distributed whenever a sensor node joins
or leaves the group. In performing rekeying, LARK must be scalable in terms of communication
overhead and e�cient in terms of key authentication computing and storage overhead.

3. SYSTEM ARCHITECTURE

In our system a sensor node becomes member of a group by explicitly joining it. As a member
of the group, the node may broadcast messages to the other members. Later on, a node may
voluntarily leave the group or be forced to leave if compromised. After leaving a group, a node
cannot be member of the group and cannot send messages to, or receive messages from, that
group.

Groups may overlap, that is a sensor node may belong to one or more groups. A group can be
further composed of other groups. More in detail, let G

i

and G
k

be two overlapping groups so
that G

i

\ G
k

6= ;. If G
k

✓ G
i

, then G
i

contains G
k

, or equivalently G
k

is a sub-group of G
i

. It
follows that each sensor node s that is member of G

k

is also member of G
i

. On the other hand,
there could be a member of group G

i

that is not included in the group G
k

. It follows that when
a sensor node s leaves a group G, then it leaves all the sub-groups of G containing s (cascade
leave). When a sensor node s joins a group G, then s joins all the groups containing G (cascade
join). With reference to Figure 1, the group G

1

contains the sensor node s
d

and groups G
3

and
G

4

. Hence, G
1

includes the sensor nodes belonging to its sub-groups, i.e., s
a

, s
b

and s
c

. With
reference to this example, if sensor node s

c

leaves G
1

, it also leaves G
4

. If a new sensor node s
e

joins G
3

, it also joins the group G
1

.
The system is managed by a WSN Controller (WSNC ) that is composed of three main compo-

nents: a Group Membership Service (GMS ), a Key Management Service (KMS ), and an Intrusion
Detection System (IDS ). The GMS component maintains the membership of groups by keeping
track of sensor nodes that join and leave the groups. A sensor node wishing to cooperate in a
specific group invokes the join operation. We assume that, upon joining the system, a node is
genuine, i.e., it is not compromised and its integrity is guaranteed. Later on, the sensor node may
decide to terminate its collaboration and explicitly leave the group by invoking the leave operation.
As individual sensor nodes are exposed to attackers, the IDS component probes/monitors network
activities to uncover compromised nodes [Roman et al. 2006; Wang et al. 2008; Zhang et al. 2008].
Upon detecting a compromised sensor node, IDS forces the sensor node to leave every group the
sensor node belongs to by invoking the leave operation and specifying the identifiers of the sensor
node and the group as arguments. After that the node cannot re-join anymore.

Whenever a sensor node joins or leaves a group, the group-key has to be renewed in order
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Fig. 3. In a Key-Chain, keys are created and revealed in the same order.

to guarantee the backward and forward security requirements. KMS is the component that is
responsible for performing such a rekeying task. Upon handling a change in the group membership,
GMS activates a rekeying by invoking the rekeying operation of KMS and specifying the kind of
event, join or leave, that gave rise to the membership change. In addition to this event-based
rekeying policy, KMS can also give support to a periodic rekeying aimed at reducing the amount
of encrypted material available to an adversary.

In a centralised approach, WSNC can be implemented by a more powerful computing node than
sensor nodes. WSNC may well be a computing node such as a PC, a workstation, or a server,
with plentiful of computational, storage, communication and power resources. Furthermore,
we reasonably assume that WSNC will be not compromised. Although workstation and server
security are still research issues, the literature provides a number of established techniques and
methodologies to keep workstations and servers secure. Good starting readings are [Anderson
2008; Cole 2009], for example. In the rest of the paper we detail KMS .

4. KEY AUTHENTICITY

The proposed protocol achieves e�cient key authenticity by employing chains of keys. This mech-
anism allows us to e�ciently verify the authenticity of a key by simply computing a lightweight
cryptographic primitive such as an hash function. A chain of keys is an ordered set of a predefined
number l > 0 of symmetric keys. We denote by K (i) the i-th key of the chain with 0  i < l. The
key server KMS constructs and stores a chain of keys, and then distributes the keys in increasing
order. That is, KMS distributes K (i) if and only if all the keys K (j) with j < i are already
distributed. So, firstly KMS distributes the key K (0), defined as chain head. Furthermore, if the
i-th key K (i) is the last distributed key, the next key that has to be distributed is K (i+1). In the
rest of the paper we refer to the last distributed key as the current-key of the chain and the next
key that has to be distributed as the next-key. More in detail, we denote by head(X), curr(X)
and next(X) the head, the current-key and the next-key of key chain X, respectively.

In order to guarantee key authenticity, we consider two types of chain of keys, referred to as the
Key-Chains and the Inverted Key-Chains. The keys belonging to these types of classes are linked
to each other by means of a one-way hash function [Menezes et al. 1996]. A one-way hash function
H is a function that has the following properties: given an input x, it is easy to compute the
image y so that y = H(x), whereas given y it is computationally unfeasible to find the preimage
x so that y = H(x). Furthermore, given an input x and its image y = H(x) it is computationally
unfeasible to find a second preimage z such that H(z) = y. Example of one-way hash functions
are SHA-1 [National Institute of Standards and Technology 1995] and MD5 [Rivest 1992].

In Section 4.1 and 4.2, we introduce Key-Chains and Inverted Key-Chains, respectively. In
Section 4.3, we provide a preliminary intuition of the usage of Key-Chains and Inverted Key-
Chains to manage a group key. Such an intuition will be refined in the next sections.

4.1 Key-Chain

A Key-Chain Ch is a chain of l symmetric keys such that each element in the chain is the preimage
of the next one under a one-way hash function (Figure 3).

In order to compute the Key-Chain Ch, KMS randomly chooses the chain-head K(0) = r, where
r is a random secret. Then, KMS iteratively applies the hash function H in order to calculate the
other elements of the chain. More in detail, the i-th key K(i) of the chain is the hash image of the
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 4. In an Inverted Key-Chain, keys are created and revealed in the opposite order.

previous one K(i�1). That is, K(i) = H(K(i�1)) = Hi(r), 0 < i < l.

Ch = chain(r, H, l) = {K(i) | K(0) = r ^K(i) = Hi(r), i 2 (0, l)}

The Key-Chain guarantees the key authenticity. In fact, if a sensor node s knows the i-th key
K(i) of the chain Ch, then s is able to calculate the next keys K(j), j > i by iteratively applying
j � i times the hash function H to K(i). If KMS transfers the key K(i) to node s in a way
guaranteeing authenticity and secrecy, then all the keys K(j), j > i, can be considered authentic.
So, if the KMS initially transfers the chain-head, then s can locally calculate all the keys of the
chain Ch. The secrecy of the transfer is necessary to prevent an adversary from intercepting the
chain-head and thus compromising the whole key-chain.

4.2 Inverted Key-Chain

An Inverted Key-Chain ICh is a chain of l symmetric keys such that each element is the image of
the next one under a one-way hash function (Figure 4).

In order to compute the Inverted Key-Chain, KMS randomly chooses a random secret r so that
K (l�1) = r. Then, KMS iteratively applies the hash function H so that K (i) = H(K (i+1)) =
H l�i(r), 0  i < l � 1. In other word, the key K (i+1) is the hash preimage of K (i).

ICh = Ichain(r, H, l) = {K (i) | K (l�1) = r ^K (i) = H l�i(r), i 2 [0, l � 1)}

A node s can verify the authenticity of the received keys by applying the hash function H, as in
Lamport’s one-time password [Lamport 1981]. Let us assume that KMS transferred the i-th key
K (i) to s in a way guaranteeing authenticity and secrecy. Then, KMS can now transfer the next
key K (i+1) to s in a way guaranteeing only secrecy, i.e., without using authentication mechanisms
such as HMACs or digital signatures [Rivest et al. 1978]. Secrecy of transfer prevents an adversary
from eavesdropping the key. The properties of the one-way hash function guarantee that nobody
who knows K (i) is able to compute the next ones because K (i+1) is the hash preimage of K (i).
However, the sensor node s can verify the authenticity of K (i+1) by simply applying the hash
function H to K (i+1) and checking that the result is equal to K (i). That is, K (i) = H(K (i+1)).
Finally, if KMS initially transfers the chain head K (0) to node s, then s is able to verify the
authenticity of any key K (i) belonging to ICh by checking if K (0) = Hi(K (i)).

4.3 Guaranteeing backward and forward security

In this section we provide an intuitive description of the use of Key-Chains and Inverted Key-
Chains as basic mechanisms to provide backward and forward security. For the sake of simplicity
we abstract away fundamental aspects, namely secure and e�cient transport of keys, that will be
faced with in the next sections in great detail. In contrast we will focus on the di↵erent kind of
keys and their roles.

Let us consider a group G of sensor nodes and let us assume that a Joining Key-Chain Ch
J

and
a Leaving Inverted Key-Chain ICh

L

have been defined for the group. Furthermore, let us suppose
that each group member holds the current keys of the two key chains, namely the joining-key
curr(Ch

J

) and the leaving-key curr(ICh
L

). In order to guarantee backward and forward security,
group members encrypt messages by using the group-key K

G

= µ(curr(Ch
J

), curr(ICh
L

)), where
µ is a mixing function.

When a sensor node leaves, all the remaining members in G receive the next leaving-key
next(ICh

L

) from KMS in a way guaranteeing secrecy, i.e., in a way that prevents any other sub-
ject, including the leaving sensor node, from eavesdropping the key. The property of the one-way
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hash function guarantees that the leaving node who knows the current leaving-key curr(ICh
L

) is
not able to compute the next one because next(ICh

L

) is the hash preimage of curr(ICh
L

). When
the remaining members receive the next leaving-key next(ICh

L

), they verify its authenticity, com-
pute the new group key, and then start encrypting the messages using that key. It follows that
the leaving node is not able to access to the future communication.

When a new sensor node joins the communication, all the sensor nodes calculate the next
joining-key next(Ch

J

) of Ch
J

locally by applying H. The joining node receives the value of
the next joining-key next(Ch

J

) from KMS in a way guaranteeing secrecy and authenticity (e.g.,
encrypted by means of an a priori shared key). At this point, every member can compute the new
group key. As the current joining-key curr(Ch

J

) is the hash preimage of the next one next(Ch
J

),
the property of the one-way hash function guarantees that the joining node receiving next(Ch

J

)
is not able to compute the current joining-key curr(Ch

J

) and thus it cannot have access to the
previous communication.

It is important to notice that the group members need to be informed that a sensor node is joining
so that they can calculate the next-key next(Ch

J

). In other words, they need an authenticated
command from KMS that “triggers” this computation. In order to fulfil this task we use an
additional Inverted Key-Chain, the Trigger Inverted Key-Chain ICh

T

. Let us assume that each
group member holds the current trigger-key curr(ICh

T

) of ICh
T

. When a sensor node joins the
group, KMS computes the next trigger-key next(ICh

T

) and sends it to the group members. Upon
receiving this key every group member verify its authenticity and, if the verification succeeds,
computes next(Ch

J

) as described above. It is worthwhile to notice that the trigger-key only
conveys an authenticated triggering signal and thus it is not necessary to encrypt it. Furthermore,
the property of the one-way hash function guarantees that the knowledge of the current trigger-key
does not make it possible to derive the next ones. The trigger-key is transferred to the joining
node together with the joining-key.

5. LIGHTWEIGHT AUTHENTICATED REKEYING SCHEME

The mechanisms based on the Key-Chains and Inverted Key-Chains guarantees an e�cient verifi-
cation of the key authenticity. In this section, we describe the Lightweight Authenticated ReKeying
scheme (LARK) aimed at e�ciently distributing the new group key whenever a sensor node leaves
or joins a group.

In order to perform LARK, every sensor node secretly shares a symmetric sensor-key with
KMS . KMS uses this key to securely unicast rekeying material to the sensor node as necessary.
Furthermore, each sensor node stores all the group-keys of the groups to which it belongs. We
denote by K

s

the specific sensor-key of node s, and by K
G

the key of group G.

5.1 Overview of the Graph Theory

In this section, we give an overview of the graph theory concepts that are relevant to this work.
A directed graph or digraph is a pair G = (V,E) of sets such that E ✓ V 2. The elements of V
are the vertices of the graph, and the element of E are its edges. The edge hv

i

, v
k

i starts from v
i

and ends on v
k

so that hv
i

, v
k

i is said to be directed from v
i

to v
k

. With reference to hv
i

, v
k

i, the
vertex v

i

is said to be the direct predecessor of v
k

, and v
k

the direct successor of v
i

. Let us define
Pred

D

(v
i

) and Succ
D

(v
i

) the set of direct predecessors and successors of vertex v
i

respectively.

Pred
D

(v
i

) = {v
k

| 9 hv
k

, v
i

i 2 E}
Succ

D

(v
i

) = {v
k

| 9 hv
i

, v
k

i 2 E} (1)

A directed path from a vertex v
0

to v
k

is a not-empty graph P(v
0

, v
k

) = (V 0, E0), where V 0 =
{v

0

, v
1

, . . . , v
k

} and E0 = {hv
0

, v
1

i , hv
1

, v
3

i , . . . , hv
k�1

, v
k

i}. In other words, the path P(v
0

, v
k

) is
a finite ordered set of vertices V 0, in which no element is repeated, that begins with v

0

and ends
with v

k

, and a set of edges E0, in which each edge connects a vertex in V 0 to the following one.
Given a digraph G, we say that exists a directed path from the vertex v

i

to v
k

if P(v
i

, v
k

) is
contained in G. That is, P(v

i

, v
k

) ✓ G. Furthermore, if a directed path leads from v
i

to v
k

, then
v

i

is defined a predecessor of v
k

, and v
k

is defined a successor of v
i

. Let us define Pred(v
i

) and
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Fig. 5. Example of a Group-Graph.

Succ(v
i

) the set of predecessors and successors of vertex v
i

, respectively.

Pred(v
i

) = {v
k

| 9P(v
k

, v
i

) ✓ G ^ v
k

6= v
i

}
Succ(v

i

) = {v
k

| 9P(v
i

, v
k

) ✓ G ^ v
k

6= v
i

} (2)

Furthermore, we define the extended set of predecessors Pred
E

(v
i

) the set of vertices that includes
the v

i

predecessors and the same vertex v
i

. On the other hand, the extended set of successors
Succ

E

(v
i

) includes the v
i

successors and the same vertex v
i

.

Pred
E

(v
i

) = {v
i

} [ Pred(v
i

)
Succ

E

(v
i

) = {v
i

} [ Succ(v
i

) (3)

Finally, an acyclic digraph is a directed graph with no directed cycles. That is, for any vertex
v

i

there is no directed path that starts and ends on v
i

.

5.2 Group Management

Let us suppose the sensor nodes are organised in groups. KMS manages membership of groups
by means of a graph, called Group-Graph. The Group-Graph is an acyclic digraph G = (V,E) so
that each vertex of V is associated with either a sensor node or a group. In the following we refer
⌫(s) the vertex associated with the sensor node s, and ⌫(G) the vertex associated with the group
G. The set of edges E in the Group-Graph reflects the group topology existing in the system
and it is defined as follows. A vertex associated with a sensor node has no successors, whereas
the successors of a vertex associated with a group, i.e., ⌫(G), are the vertices associated with the
sensor nodes belonging to G and the sub-groups of G.

Succ(⌫(s)) = ; 8⌫(s) 2 V
Succ(⌫(G)) = {⌫(s) | 8s 2 G} [ {⌫(G0) | 8G0 6= G, G0 ✓ G)} 8⌫(G) 2 V

Finally, given a vertex v and its successor w, the set E contains the edge hv, wi only if there is
no vertex z so that z is successor of v and w is successor of z.

¬9z 2 Succ(v) | w 2 Succ(z) ) hv, wi 2 E, 8v 2 V ^ 8w 2 Succ(v) (4)

It follows that given a group G and a sensor node s, there is an edge connecting the vertices ⌫(G)
and ⌫(s) only if s belongs to G and there is no sub-group of G containing s. Furthermore, given
the group G and its sub-group G0, there is an edge connecting the vertices ⌫(G) and ⌫(G0) only if
there is no sub-group of G containing G0.

Let us consider the example of grouping shown in Figure 1. The vertices are associated with
sensor nodes and groups so that we have the labelling shown in Figure 5. Furthermore, the set of
edges E has to guarantee the following hierarchy:

Succ(v
1

) = {v
3

, v
4

, v
5

, v
6

, v
7

, v
8

}
Succ(v

2

) = {v
4

, v
7

, v
8

, v
9

}
Succ(v

3

) = {v
6

, v
7

}
Succ(v

4

) = {v
7

, v
8

}
Succ(v

j

) = ;, j 2 [5, 9]
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Let us consider the vertices v
1

and its successors v
5

and v
6

. The set E contains the edge hv
1

, v
5

i
because there is no vertex that is successor of v

1

and predecessor of v
5

. On the other hand, there
is the vertex v

3

that is successor of v
1

and predecessor of v
6

so that E does not contain the edge
hv

1

, v
6

i. By applying the Formula 4 to each vertex and its successors, the resulting set of edges
E, shown in Figure 5, is the following:

E = {hv
1

, v
3

i , hv
1

, v
4

i , hv
1

, v
5

i , hv
3

, v
6

i , hv
3

, v
7

i ,
hv

4

, v
7

i , hv
4

, v
8

i , hv
2

, v
4

i , hv
2

, v
9

i}

5.3 Forward security

In order to guarantee the forward security, KMS maintains a Leaving Key-Graph, that is a Group-
Graph where each vertex v contains a key, referred to as the leaving-key Key

L

(v) and defined as
follows. Each vertex ⌫(s) associated with the sensor node s contains the sensor-key K

s

. For every
vertex ⌫(G), KMS defines an Inverted Key-Chain ICh

L,⌫(G)

, and the vertex ⌫(G) contains the
current-key of that chain.

Key
L

(v) =
⇢

K
s

if v = ⌫(s)
curr(ICh

L,v

) if v = ⌫(G)

Each sensor node s stores all the leaving-keys associated with ⌫(s) predecessors. Hence, the
sensor node s stores the following key set KeyRing

L

(s):

KeyRing
L

(s) = {Key
L

(v) | 8v 2 Pred(⌫(s))}

It is worthwhile to notice that all the members of group G store the leaving-key contained in ⌫(G).
Hence, this key acts as the group-key K

G

and has to be renewed whenever a member leaves the
group.

K
G

= Key
L

(⌫(G)) = curr(ICh
L,⌫(G)

) (5)

When the sensor node s̃ leaves a group G, KMS must prevent s̃ from accessing the future commu-
nications. So, the corresponding group-key K

G

is considered compromised and has to be renewed.
Furthermore, when s̃ leaves the group G, it also leaves all the sub-groups of G to which s̃ belongs
(leave cascade). Hence, all the keys of these sub-groups are considered compromised and have to
be renewed. In the following we present the protocol performed both at the KMS and at sensor
nodes side that guarantees the forward security.
When the sensor node s̃ leaves the group G, KMS performs the following actions:
(1) KMS identifies the set of vertices associated with compromised keys, referred to as V

cmp

(s̃, G).
V

cmp

(s̃, G) contains the vertices associated with sub-groups of G containing s̃.

V
cmp

(s̃, G) = {⌫(G0) | G0 ✓ G ^ s̃ 2 G0}
= Pred(⌫(s̃)) \ Succ

E

(⌫(G))

(2) KMS removes the edges connecting ⌫(s̃) to its direct predecessors in V
cmp

(s̃, G). Then, if the
set of ⌫(G) direct predecessors is not empty, KMS adds the edges connecting the vertex ⌫(s̃)
to each of ⌫(G) direct predecessors.

E = E � {hv, ⌫(s̃)i | 8v 2 V
cmp

(s̃, G)}
E = E [ {hv, ⌫(s̃)i | 8v 2 Pred

D

(⌫(G))}

If the vertex ⌫(s̃) has no predecessors, then it is removed from the graph.

Pred(⌫(s̃)) = ; ) V = V � {⌫(s̃)}

(3) For each vertex v in V
cmp

(s̃, G), KMS updates the corresponding leaving-key Key
L

(v) with
the next-key of the chain ICh

L,v

.

8v 2 V
cmp

(s̃, G),Key
L

(v) = next(ICh
L,v

)

(4) For each vertex v in V
cmp

(s̃, G) and for each direct successor w of v, KMS builds the rekeying
message M

L

(v, w) as follows.

M
L

(v, w) : v, w, E
KeyL(w)

(Key
L

(v)) 8v 2 V
cmp

(s̃, G),8w 2 Pred
D

(v),
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



LARK: a Lightweight Authenticated ReKeying scheme for Clustered Wireless Sensor Networks · 121

where E
K

(m) the encryption of message m by using the key K. Notice that by construction
the vertex v is associated with a group, whereas the vertex w may be associated with either
a group or a sensor node.

(5) KMS broadcasts the rekeying messages in a bottom-up order. More in detail, KMS broadcasts
a message M

L

(v, w) only if it has already broadcast the messages M
L

(v0, w0),8v0 2 Succ(v)\
V

cmp

(s̃, G) ^ 8w0 2 Pred
D

(v0). It is worthwhile to notice that after broadcasting the message
M

L

(v, w) the key Key
L

(v) is the last distributed key of the chain ICh
L,v

or, in other words,
the new current-key curr(ICh

L,v

).
With reference to Figure 5, let us suppose that the sensor node s

a

leaves the group G
1

, and
consequently the group G

3

. Hence, the set V
cmp

(s
a

, G
1

) contains v
1

and v
3

(Step 1). Then, KMS
removes the edge hv

3

, v
6

i connecting the vertices associated with G
3

and s
a

. Since the vertex v
6

has no predecessor, v
6

is removed from the graph (Step 2). Then, for each vertex in V
cmp

(s
a

, G
1

),
KMS chooses the next-key of the corresponding Inverted Key-Chain (Step 3). Hence, the leaving-
key of vertex v is defined as follows:

Key
L

(v) =

8
<

:

K
s

if v = ⌫(s)
curr(ICh

L,v

) if v = ⌫(G0) ^ v /2 V
cmp

(s̃, G)
next(ICh

L,v

) if v = ⌫(G0) ^ v 2 V
cmp

(s̃, G)

Finally, KMS broadcasts the following messages in the following order (Step 4 and 5):

M
L

(v
1

, v
5

) : v
1

, v
5

, E
Ksd

(next(ICh
L,v1))

M
L

(v
3

, v
7

) : v
3

, v
7

, E
Ksb

(next(ICh
L,v3))

M
L

(v
1

, v
3

) : v
1

, v
3

, E
next(IChL,v3 )

(next(ICh
L,v1))

M
L

(v
1

, v
4

) : v
1

, v
4

, E
curr(IChL,v4 )

(next(ICh
L,v1))

Let us consider the sensor node s that receives the message M
L

(v, w) broadcast by KMS at
Step 5. Firstly, s verifies whether the rekeying message refers to a group which s belongs to.
Then, s verifies whether it is able to decrypt the renewed key contained in the message. That is,
s verifies whether the set of its predecessors Pred(⌫(s)) contains the vertex v, and whether the
vertex w is associated with either itself (i.e. w = ⌫(s)), or with a group which s belongs to (i.e.,
w 2 Pred(⌫(s))). In case both the conditions are verified, the sensor node s decrypts the received
message, otherwise it discards the message.

In case one of the above conditions is not verified, the sensor node s discards the received
message. Otherwise, s decrypts the key contained in the message by using K

dec

(w) defined as
follows:

K
dec

(w) =

8
<

:

K
s

if w = ⌫(s)
curr(ICh

L,w

) if w 2 Pred(⌫(s))
? otherwise

It is worthwhile to notice that if the vertex w belongs to V
cmp

(s̃, G), the sensor node s has already
received the renewed key of vertex w (Step 5). Let us define K the value of the decrypted key,
then the sensor node s verifies the key authenticity as described in Section 4.2. In fact, the
leaving-key Key

L

(v) contained in KeyRing
L

(s) corresponds to the current-key of chain ICh
L,v

.
So the sensor node s has to check whether the hash value of K matches the value of Key

L

(v).
That is, H(K) = Key

L

(v). If this is the case, s updates the key ring with the new value so that
Key

L

(v) = K.
Let us suppose that the vertex v is associated with the group G0. Since the key of group G0

corresponds to the leaving-key of vertex ⌫(G0) (Equation 5), then the value of the key K
G

0 is
automatically updated.

5.4 Backward security

In order to guarantee backward security, LARK maintains a Joining Key-Graph, that is a Group-
Graph such that each vertex v contains the trigger-key Key

T

(v) and the joining-key Key
J

(v)
defined as follows. For each vertex associated with the sensor node s, the trigger-key and the
joining-key correspond to the sensor-key K

s

. For each vertex v associated with a group, KMS
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defines two chains of keys: an Inverted Key-Chain ICh
T,v

and a Key-Chain Ch
J,v

. Therefore, the
keys Key

T

(v) and Key
J

(v) are the current-keys of the chains ICh
T,v

and Ch
J,v

, respectively.

Key
T

(v) =
⇢

K
s

if v = ⌫(s)
curr(ICh

T,v

) if v = ⌫(G)

Key
J

(v) =
⇢

K
s

if v = ⌫(s)
curr(Ch

J,v

) if v = ⌫(G)

Each sensor node s stores all the trigger-keys and the joining-keys associated with ⌫(s) prede-
cessors. Hence, the sensor node s stores the following key sets KeyRing

T

(s) and KeyRing
J

(s):

KeyRing
T

(s) = {Key
T

(v) | 8v 2 Pred(⌫(s))}
KeyRing

J

(s) = {Key
J

(v) | 8v 2 Pred(⌫(s))}

In particular, all the members of group G store the joining-key Key
J

(⌫(G)) associated with ⌫(G).
Hence, this key acts as the group-key K

G

and has to be renewed whenever a member joins the
group.

K
G

= Key
J

(⌫(G)) = curr(Ch
J,⌫(G)

) (6)

In order to guarantee the backward security, when a sensor node s̃ joins the group G, KMS
must prevent s̃ from accessing the previous communication. So, the group-key K

G

is considered
compromised and has to be renewed. Furthermore, when s̃ joins the group G, it also joins all the
groups containing G (join cascade). Hence, all the keys of groups containing G are considered
compromised and have to be renewed.

Let us suppose that a sensor node s̃ joins the group G. Then, KMS performs the following
actions to guarantee the backward security.

(1) In case the set V contains no vertex associated with s̃, then KMS adds the new vertex ⌫(s̃).
In this case, we have that Pred(⌫(s̃)) = ;.

V = V [ {⌫(s̃)}

(2) KMS identifies the set of vertices associated with compromised keys, referred to as V
cmp

(s̃, G).
V

cmp

(s̃, G) contains the vertices associated with groups containing G that do not already
include s̃.

V
cmp

(s̃, G) = {⌫(G0) | G ✓ G0 ^ s̃ /2 G0}
= Pred

E

(⌫(G))� Pred(⌫(s̃))

(3) KMS removes the edges connecting the vertex ⌫(s̃) and each vertex in Pred(⌫(G))\Pred(⌫(s̃)).
Then, KMS adds an edge connecting the vertex ⌫(G) and ⌫(s̃).

E = E � {hv, ⌫(s̃)i | 8v 2 Pred
E

(⌫(s̃)) \ Pred(⌫(G))}
E = E [ {h⌫(G), ⌫(s̃)i}

(4) For each vertex v in V
cmp

(s̃, G), KMS updates the corresponding trigger-key and the joining-
key with the next-key of the chains ICh

T,v

and Ch
J,v

.

8v 2 V
cmp

(s̃, G),
⇢

Key
T

(v) = next(ICh
T,v

)
Key

J

(v) = next(Ch
J,v

)

(5) For each vertex v in V
cmp

(s̃, G), KMS broadcasts the rekeying message M
T

(v) containing the
key Key

T

(v) so that the sensor nodes can locally calculate the next joining-key of vertex v,
after verifying the Key

T

(v) authenticity.

M
T

(v) : v,Key
T

(v) 8v 2 V
cmp

(s̃, G)

(6) Finally KMS updates the key sets of the joining member s̃. Let us consider, for example, the
key set KeyRing

T

(s̃). Then, for each vertex v in V
cmp

(s̃, G) KMS unicasts s̃ the message
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Fig. 6. Group-Graph in case of joining.

M?

T

(v, ⌫(s̃)) containing the trigger-key Key
T

(v) and the message M?

J

(v, ⌫(s̃)) containing the
joining-key Key

J

(v), both encrypted by means of the sensor-key K
s̃

.

M?

T

(v, ⌫(s̃)) : v,Eh

Ks̃
(Key

T

(v)) 8v 2 V
cmp

(s̃, G)
M?

J

(v, ⌫(s̃)) : v,Eh

Ks̃
(Key

J

(v)) 8v 2 V
cmp

(s̃, G)

where Eh

K

(m) is the encryption of the message m concatenated with its hash value by means
of the key K. That is, Eh

K

(m) = E
K

(mkh(m)).

With reference to Figure 6, let us suppose that the sensor node s
e

joins the group G
4

, and
consequently the group G

1

. The sensor node s
e

belongs to G
2

so that its corresponding vertex v
9

is already included in V (Step 1). It follows that Pred(⌫(s
e

)) = Pred(v
9

) = {v
2

}.
KMS defines the set V

cmp

(s
e

, G
4

) containing v
1

and v
4

(Step 2). Since G
4

is sub-group of
G

2

, KMS removes the edge hv
2

, v
9

i and adds the edge hv
4

, v
9

i (Step 3). For each vertex v in
V

cmp

(s
e

, G
4

), KMS chooses the next-key of chains ICh
T,v

(Step 4). Then, at Step 5 KMS broad-
casts the following messages:

M
T

(v
1

) : v
1

, next(ICh
T,v1)

M
T

(v
4

) : v
4

, next(ICh
T,v4)

Finally, KMS unicasts s
e

the following messages (Step 6):

M?

J

(v
1

, v
9

) : v
1

, v
9

,Eh

Ks̃
(next(Ch

J,v1))
M?

T

(v
1

, v
9

) : v
1

, v
9

,Eh

Ks̃
(next(ICh

T,v1))
M?

J

(v
4

, v
9

) : v
1

, v
9

,Eh

Ks̃
(next(Ch

J,v4))
M?

T

(v
4

, v
9

) : v
4

, v
9

,Eh

Ks̃
(next(ICh

T,v1))

In order to reduce the communication overhead KMS can unicast more keys in one message. Such
implementation depends on the structure of the CSMA protocol. However, KMS has to take into
account that using longer frame could increase the probability of frame loss as a result of collisions.

A sensor node behaves di↵erently according to whether it is the joining node or it is already
member of the network.

Let us consider a sensor node s 6= s̃ that receives the message M
T

(v) broadcast by KMS (Step 5).
Firstly, s verifies whether the rekeying message refers to a group which s belongs to. That is, s
verifies whether the set of s predecessors Pred(⌫(s)) contains the vertex v. If this is the case, the
sensor node s has to verify the key authenticity of the trigger-key K contained in M

T

(v). Since
the trigger-key belongs to an Inverted Key-Chain (Section 4.2), the sensor node s checks whether
the hash value of the received key K matches the value of Key

T

(v). That is, H(K) = Key
T

(v).
If it is the case, s updates the key set KeyRing

T

(s) with the new value so that Key
T

(v) = K.
Then, the sensor node s renews the joining-key of vertex v by applying the hash function to the
key Key

J

(v) stored in KeyRing
J

(s) (Section 4.1). Let us suppose the vertex v is associated with
group G0. Since the key K

G

0 corresponds to the joining-key of vertex v (Equation 6), at the end
of the protocol the sensor node s updates the value of K

G

0 .
Let us consider the joining node s̃ receiving a rekeying message M?

J

(v, ⌫(s̃)) (Step 6). The
joining sensor node decrypts the message with its sensor-key and separates the recovered key K
from the recovered hash H. Then, s̃ computes the hash function on K and compares it with
H. If these quantities are equal, K is accepted as being authentic. The encryption protects the
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appended hash so that it is unfeasible for an attacker without K
s̃

to alter the message without
disrupting the correspondence between K and its hash value [Menezes et al. 1996]. Then, s̃ inserts
the key K in the corresponding key set on the basis of the received message. In fact, in case of
M?

J

(v, ⌫(s̃)), the sensor node s̃ updates the key Key
J

(v) belonging to KeyRing
J

(s).

5.5 Forward and backward security

In order to guarantee both the backward and forward security, LARK hinges on the Leaving
Key-Graph, described in Section 5.3, and the Joining Key-Graph, described in Section 5.4.

In this case, each sensor node s stores the following key sets:

KeyRing
L

(s) = {Key
L

(v) | 8v 2 Pred(⌫(s))}
KeyRing

T

(s) = {Key
T

(v) | 8v 2 Pred(⌫(s))}
KeyRing

J

(s) = {Key
J

(v) | 8v 2 Pred(⌫(s))}

The key of group G is given by mixing the leaving-key of the vertex ⌫(G), and the joining-key
of ⌫(G). Hence, given µ the mixing function, we have the following equation:

K
G

= µ(Key
L

(⌫(G)),Key
J

(⌫(G))
= µ(curr(ICh

L,⌫(G)

), curr(Ch
J,⌫(G)

)) (7)

When a sensor node s̃ leaves the group G, and thus all the sub-groups of G, KMS and the sensor
nodes perform the algorithm described in Section 5.3. In particular, KMS renews the leaving-
key of vertex ⌫(G), and securely distributed it to all G members but the leaving one. Since the
leaving member is not able to calculate the renewed leaving-key, and thus the renewed group-key
(Equation 7), the protocol guarantees the forward security.

When a sensor node s̃ joins the group G, and thus all the groups containing G, KMS and the
sensor nodes perform the algorithm described in Section 5.4. In particular, KMS broadcasts the
the trigger-key of vertex ⌫(G) so that each sensor node locally renews the corresponding joining-
key. Then, KMS unicasts s̃ the renewed joining-key. Since the joining member is not able to
calculate the previous joining-key, and thus the previous group-key (Equation 7), the protocol
guarantees the backward security.

5.6 Initialization and reconfiguration

In the initialization phase, KMS initialises sensor nodes via o↵-line methods. KMS assigns an
identifier and a sensor-key to each member. The sensor-key for s is generated as follows: K

s

=
f(MK, s), where s is the node identifier, f is a secure pseudo-random function and MK is a master
key known only by KMS . In this scheme KMS needs only to keep MK in storage and computes
K

s

whenever it needs to communicate with s.
In order to guarantee both the forward and backward security, for each vertex v associated with

a group, KMS computes two Inverted Key-Chains, ICh
L,v

and ICh
T,v

, and a Key-Chain, Ch
J,v

.
During the initialization phase, each sensor node s securely receives the chain-heads of vertices
that are predecessors of ⌫(s). More in detail, the set KeyRing

L

(s) initially contains the chain-
heads of ICh

L,v

for each vertex v belonging to Pred(⌫(s)). Equivalently, the sets KeyRing
T

(s) and
KeyRing

J

(s) contain the chain-heads of ICh
T,v

and Ch
J,v

respectively for each vertex v belonging
to Pred(⌫(s)). Such initialization takes places via o↵-line methods or through the network. In the
latter case, KMS has to guarantee the key confidentiality and authenticity by unicasting s the
following messages M?

L

(v, ⌫(s̃)), M?

T

(v, ⌫(s̃)), and M?

J

(v, ⌫(s̃)) for each vertex in Pred(⌫(s)).
The chains have a limited length so that when all keys have been distributed, the chain has

run out, and KMS has to reconfigure it as follows. Let us suppose that KMS has distributed
all the leaving-keys of the Inverted Key-Chain associated with vertex v. KMS builds a new key
chain ICh

T,v

as specified in Section 4. Then, for each sensor node whose corresponding vertex is
a successor of v KMS has to unicasts M?

T

(v, ⌫(s̃)) containing the chain-head head(ICh
T,v

).
The length of the chains could depend on the vertex with which it is associated. More in detail,

the chains of vertices associated with groups whose membership is highly dynamic are longer than
the chains of vertices associated with static groups that are periodically rekeyed. Furthermore, let
us consider a group G and its sub-group G0. The members of group G0 are also members of G and
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Table I. Rekeying messages

Message Destination Keys

ML(v, w) BRDcst E
KeyL(w)

(KeyL(v))

M?
L(v, ⌫(s)) UNIcst Eh

Ks
(KeyL(v))

MT (v) BRDcst KeyT (v)
M?

T (v, ⌫(s̃)) UNIcst Eh
Ks

(KeyT (v))

M?
J (v, ⌫(s̃)) UNIcst Eh

Ks
(KeyJ (v))

when a sensor node joins the group G0 it also joins the group G. When a sensor node leaves the
group G0, it usually leaves also the group G. For this reason, the chains associated with a vertex
v are consumed less quickly than the ones associated with v predecessors.

The size of messages broadcast by KMS limits the length of the chains and the number of groups
that are included in the system. As shown in Table I, the rekeying messages contain the indexes of
the corresponding vertices. Hence, these indexes limit the number of vertices so that the graph is
composed of at most 2kvk vertices, where k.k is the bit-length of the vertex identifier. Furthermore,
the messages contain the indexes corresponding to the position of the key in the chains. These
indexes are used for synchronisation among sensor nodes. Consequently, these indexes limit the
length of the corresponding key-chains.

It is worthwhile to notice that messages M
L

(v, w) and M
T

(v) contain only the key without
appending a digital signature for guaranteeing authenticity.

6. ANALYSIS AND EVALUATION

In this section we present a formal security analysis of LARK and a performance evaluation based
on the protocol prototype. In particular, the prototype has been implemented on very simple
devices of TmoteSky class [Moteiv ]. Thus, we show that the protocol is suitable for devices with
low computational and communication capabilities.

6.1 Security Analysis

In this section, we formally argue that LARK guarantees both the forward and the backward
security. Let us suppose that at time t? the membership of a group G changes so that a sensor
node leaves the group, or a new sensor node joins the group.

Let us define G
bfr

and G
aft

the set of sensor nodes holding the key of group G before and after
t? respectively. It follows that:

(1) in case the sensor node s̃ leaves the group G at time t?, we have to prove that G
aft

includes
every user of G

bfr

, but the leaving one (forward security).

G
aft

= G
bfr

� {s̃} (8)

(2) in case the new sensor node s̃ joins the group G at time t?, we have to prove that G
aft

includes
every user of G

bfr

and the joining one (backward security).

G
aft

= G
bfr

[ {s̃} (9)

6.1.1 Forward security. In order to prove forward security, Equation 8 can be rewritten as
follows:

s 2 G
aft

, (s 2 G
bfr

) ^ (s 6= s̃) (10)

Let V
enc

(s̃, G) be the set of vertices not included in V
cmp

(s̃, G) that have a direct predecessor
in V

cmp

(s̃, G). Intuitively, V
enc

(s̃, G) contains the vertices whose key is not compromised and is
used to encrypt a rekeying message. Figure 7 shows an example of V

enc

(s̃, G) when the sensor
node s

a

leaves the group G
1

.

V
enc

(s̃, G) = {w | w /2 V
cmp

(s̃, G) ^ 9v 2 V
cmp

(s̃, G) \ Pred
D

(w)} (11)

The proof will be articulated in two parts. In Proposition 6.1 we prove that a sensor node s
belongs to G

aft

if and only if the vertex of node s, or the vertex of one of its predecessors, belongs
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Fig. 7. Example: sa leaves the group G
1

.

to V
enc

(s̃, G).

s 2 G
aft

, (Pred
E

(⌫(s)) \V
enc

(s̃, G) 6= ;) (12)

In Proposition 6.2 we prove that the vertex of node s, or the vertex of one of its predecessors,
belongs to V

enc

(s̃, G) if and only if s belongs to G
bfr

and s 6= s̃.

(Pred
E

(⌫(s)) \V
enc

(s̃, G) 6= ;) , (s 2 G
bfr

) ^ (s 6= s̃) (13)

By combining Equation 12 and 13, it follows that a sensor node belongs to G
aft

if and only if it
belongs to G

bfr

and s 6= s̃ that is exactly what we would like to prove (Equation 10).

Proposition 6.1. The sensor node s belongs to G
aft

if and only if the set of vertices V
enc

(s̃, G)
contains the vertex of node s or the vertex of one of its predecessors (Equation 12).

Proof. In general, a sensor node belongs to the group G if and only if the node holds the group
key K

G

. According to Equations 5 and 7, a sensor node s can calculate K
G

if and only if it can
access the corresponding leaving-key Key

L

(⌫(G)). Therefore, the sensor node s belongs to G
aft

if and only if s can access the renewed leaving-key of vertex ⌫(G). Given the one-way properties
of the Inverted Key-Chain ICh

L,⌫(G)

, a sensor node cannot compute the next key even if it has
access to the previous ones (Section 4.3). It follows that s belongs to G

aft

if and only if it is able
to decrypt at least one of the rekeying messages that KMS broadcasts at Step 5 (Section 5.3).

Let us consider the rekeying message M
L

(v, w) containing the renewed leaving-key of vertex v
encrypted by means of Key

L

(w). It is worthwhile to notice that KMS broadcasts the rekeying
message in such an order that when KMS broacasts the rekeying message of vertex v, it has
already broadcast the rekeying messages of the compromised successors of v, i.e., those successors
belonging to V

cmp

(s̃, G). So, if the sensor node s has access to the renewed leaving-key of vertex
v 2 V

cmp

(s̃, G), v 6= ⌫(G), then s can recursively have access to Key
L

(⌫(G)). So, given v 2
V

cmp

(s̃, G), the sensor node s can decrypt M
L

(v, w) and thus have access to the renewed key
of vertex v if and only if 1) Key

L

(w) is not compromised, and 2) s stores the key Key
L

(w). If
Key

L

(w) is not compromised, then w does not belong to V
cmp

(s̃, G), w is a direct successor of v,
and v is compromised. Thus, the vertex w belongs to V

enc

(s̃, G). If s stores the key Key
L

(w),
then either Key

L

(w) corresponds to K
s

or belongs to KeyRing
L

(s). In other words, the vertex w is
either associated with the sensor node s or is included in Pred(⌫(s)). So, the vertex w is contained
in V

enc

(s̃, G)\Pred
E

(⌫(s)). It follows that s can have access to the key of the compromised vertex
v if and only if the intersection between V

enc

(s̃, G) and Pred
E

(⌫(s)) is not empty.

Proposition 6.2. The set of vertices V
enc

(s̃, G) contains the vertex ⌫(s) or one of ⌫(s) pre-
decessors if and only if the sensor node s belongs to G and s 6= s̃ (Equation 13).

Proof. In the first part, we prove that:

(s 2 G
bfr

) ^ (s 6= s̃) ) (Pred
E

(⌫(s)) \V
enc

(s̃, G) 6= ;) (14)

Let us consider a node s belonging to G
bfr

so that s 6= s̃. The node s is included in a sub-group
of G

bfr

containing s̃, or in a sub-group of G
bfr

that does not contain s̃. Consider a sub-group
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G0 of G
bfr

, G0 ✓ G
bfr

with s and s̃ in G0 and s 6= s̃. Then, 1) there is an edge connecting the
vertices ⌫(s) and ⌫(G0), and 2) and ⌫(G0) is included in V

cmp

(s̃, G). By definition V
cmp

(s̃, G)
contains only vertices associated with groups, that is, ⌫(s̃) /2 V

cmp

(s̃, G). Hence, ⌫(s) is included
in V

enc

(s̃, G). Since Pred
E

(⌫(s)) contains ⌫(s), it follows that ⌫(s) 2 Pred
E

(⌫(s)) \ V
enc

(s̃, G),
and thus Equation 15.

(s 2 G0 ^G0 ✓ G
bfr

^ s̃ /2 G0) ) Pred
E

(⌫(s)) \V
enc

(s̃,G
bfr

) 6= ; (15)

Consider now G0 ✓ G
bfr

with s̃ /2 G0, s 2 G0 and s 6= s̃. Then, 1) the set Pred
E

(⌫(s)) contains
⌫(G0) and its predecessors, and 2) ⌫(G0) is not included in V

cmp

(s̃, G), whereas ⌫(G) is. Since G0

is sub-group of G
bfr

, we have that the vertex ⌫(G0) or one of its predecessors is not compromised
and has a direct predecessor in V

cmp

(s̃, G). It follows that there is a vertex w so that Pred(⌫(s))\
V

enc

(s̃, G) 6= ; and thus Equation 16.

(s 2 G0 ^G ✓ G0 ^ s̃ 2 G0) ) Pred
E

(⌫(s)) \V
enc

(s̃, G) 6= ; (16)

So, by combining the Equations 15 and 16 we have Equation 14.
In this second part of the proof, we prove that if the intersection between Pred

E

(⌫(s)) and
V

enc

(s̃, G) is not empty, then the sensor node s belongs to s̃ and s 6= s̃. That is,

(Pred
E

(⌫(s)) \V
enc

(s̃, G) 6= ;) ) (s 2 G) ^ (s 6= s̃) (17)

The proof is by contradiction. By absurd let us suppose that s /2 G or s = s̃. Let us consider
a sensor node s so that s does not belong to G

bfr

. Then, we have that ⌫(s) is not included
in Succ

E

(⌫(G)), or in other words that Pred
E

(⌫(s)) \ Succ
E

(⌫(G)) = ;. Since V
enc

(s̃, G) ✓
Succ

E

(⌫(G)), it follows that Pred
E

(⌫(s)) \ V
enc

(s̃, G) = ;. Given s = s̃, at step 2 (Sec-
tion 5.3), KMS removes every edge connecting the vertex ⌫(s) with the vertices belonging to
V

cmp

(s̃, G). It follows that neither ⌫(s) nor one of ⌫(s) predecessors belong to Succ
E

(⌫(G)). That
is, Pred

E

(⌫(s)) \ Succ
E

(⌫(G)) = ;. Since V
enc

(s̃, G) is a subset of Succ
E

(⌫(G)), it follows that
Pred

E

(⌫(s)) \ V
enc

(s̃, G) = ;. Then, the assumptions s /2 G or s = s̃ lead to an absurd and thus
we have the Equation 17.

6.1.2 Backward security. In order to prove the backward security, Equation 8 can be rewritten
as follows:

(1) The set G
aft

includes every sensor node in G and the joining one s̃.

s 2 G
aft

, (s 2 G
bfr

) _ (s = s̃) (18)

(2) The joining sensor node s̃ has not access to the group-key held by nodes in G
bfr

.

According to Equation 6 and 7, a sensor node s belongs to G
aft

if and only if it can have
access to the renewed joining-key of vertex ⌫(G). The one-way properties of the Key-Chain
Ch

J,⌫(G)

guarantees the a sensor node s can obtain the next joining-key next(Ch
J,⌫(G)

) only if it
already stores the current-key curr(Ch

J,⌫(G)

), or if it receives the next-key through a predefined
authenticated channel, as described in Section 4.3.

A sensor nodes s belonging to G
bfr

already stores the current joining-key curr(Ch
J,⌫(G)

) and
the current trigger-key curr(ICh

T,⌫(G)

). So, when the sensor node s receives the rekeying message
M

T

(⌫(G)) containing the renewed trigger-key, s can verify the key authenticity on the basis of the
properties of the Inverted Key-Chains (Section 4.2). Then, s can also locally calculate the next
joining-key by simply applying the hash function as described in Section 4.1. Thus, if a sensor
node s belongs to G

bfr

, it also belongs to G
aft

.
On the contrary, the joining member s̃ receives the message M?

J

(⌫(G), ⌫(s̃)) containing the
renewed joining-key of vertex ⌫(G) encrypted with its own sensor-key. Thus, the sensor node
s̃ belongs to G

aft

. Furthermore, given the one-way properties of the Key-Chain Ch
J,⌫(G)

, s̃
is not able to compute the previous keys (Section 4.1) and thus have access to the previous
communication.
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Table II. Computational cost to process a rekey-
ing message (in milliseconds) using SkipJack (a) or
RC5 (b)

(a)

Operation ML M?
L MT M?

T M?
J

SHA-1 3.91 3.91 2⇥ 3.91 3.91 3.91
SkipJack 1.46 1.93 - 1.93 1.93
Preproc. 1.22 1.22 1.22 - 1.22

Total 7.24 7.47 9.34 5.88 7.47

(b)

Operation ML M?
L MT M?

T M?
J

SHA-1 3.91 3.91 2⇥ 3.91 3.91 3.91
RC5 3.85 5.12 - 5.12 5.12
Preproc. 6.45 6.45 6.45 - 6.45

Total 14.81 15.76 14.47 9.60 15.76

6.2 Performance evaluation

In this subsection we analyse storage, communication, and computing overhead of LARK. In
particular, we show the protocol is adequate for resource-constrained devices, such as TmoteSky
sensor nodes.

6.2.1 Prototype. TmoteSky sensor nodes are device powered with two AA batteries and equipped
with a 16-bit 8MHz MSP430 micro-controller, 48 Kbytes of ROM, 10 Kbytes of RAM, and IEEE
802.15.4 radio interface. They run the TinyOS operating system [Hill et al. 2000]. Our imple-
mentation uses SkipJack [National Institute of Standards and Technology 1998] or RC5 [L. 1994]
as symmetric cipher, and SHA-1 [National Institute of Standards and Technology 1995] as hash
function. We borrowed the TinySec implementation of these algorithms [Karlof et al. 2004]. How-
ever, as TinySec did not support Tmote Sky, we had to port the machine-dependent parts of such
implementations onto our platform. The structure of messages of the prototype is based on the
packet format of TinyOS. The header of the message contains the destination address, the appro-
priate handler function to extract and interpret the message on the receiver, and the length of the
payload. The payload contains the fields KData and KIndex. In particular, KData contains the
cryptographic key that KMS unicasts to a specific-sensor node or broadcasts to the group mem-
bers. The field KIndex contains the identifier of the keys contained in the rekeying message. The
key of a group G is identified by its vertex ⌫(G) and its position in the corresponding key-chain,
whereas the sensor-key is identified by the sensor identifier. Let us consider the message M

L

(v, w)
containing the key Key

L

(v) encrypted by using the key Key
L

(w). Hence, KIndex contains the
index v and w, and the position of keys Key

L

(v) and Key
L

(w) in the key chains ICh
L,v

and
ICh

L,w

respectively. In case of message M
T

(v), KIndex contains the index v and the position of
key Key

T

(v) in the key chain ICh
T,v

. In case of unicast messages, such as M?

J

(v, ⌫(s̃)), KIndex
contains the indexes v and ⌫(s̃), and the position of Key

J

(v) in the key chain Ch
J,v

. Finally, the
rekeying message contains Cyclic Redundancy Code (CRC) that is used by receivers to detect
transmission errors.

6.2.2 Computing and storage overhead. In this section we discuss computing and storage costs
of LARK for both sensor nodes and Key Management Service KMS . As to sensor nodes, we
consider both the computing and storage overhead due to their reduced resources. In contrast, as
to KMS , we only consider the storage overhead.

Table II reports the total amount of time (in milliseconds) employed by each sensor node to
process a rekeying message. The table highlights the three main operations contributing to the
computation overhead that are: i) decrypting the message by means of a symmetric cypher, ii)
verifying the key authenticity by means of an hash function, and iii) refreshing the corresponding
group-key. In particular, from the implementation point of view refreshing a key consists in pre-
processing the key as required by cypher. More in detail, upon receiving a message containing
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a leaving-key, e.g., M
L

or M?

L

, the sensor node decrypts the message and calculates the hash
value to verify the authenticity. Then it calculates and pre-processes the corresponding group-key.
When a member receives a message M

T

containing the trigger-key, it verifies the key authenticity
by applying the hash function. Then it renews the join-key by means of the hash function and
pre-processes the corresponding group-key. When a sensor node receives a message M?

T

, it has
only to decrypt the messages and to verify the key authenticity without renewing the other keys.
When a sensor node receives a message M?

J

, it decrypts the message and verifies its authenticity.
Then, it updates its stored join-key and pre-processes the corresponding group-key.

As shown in the table, the proposed solution requires from 5.88 ms to 9.34 ms to process a
rekeying message by using Skipjack as symmetric cypher (Table II.a), and from 9.80 ms to 15.56
ms by using RC5 (Table II.b). In particular, to verify the authenticity of a key each sensor node
applies the hash-function SHA-1 that requires 3.91 ms. This is an improvement with respect to
other solutions such as [Waldvogel et al. 1999], that uses a digital signature for key authentication.

As to storage overhead in sensor nodes, we consider two aspects, namely the storage necessary
for cryptographic keys and that for the code. Although memory space is a very scarce resource
for the current generation of sensor nodes, storage of keys is not a problem in our scheme. A
sensor node s needs to store the sensor-key K

s

, and the key ring. With reference to Section 5.5, a
sensor node could avoid storing the group-keys and could compute them from the corresponding
joining-keys with leaving-keys as needed. However, so doing, it would each time incur in the cost
of pre-processing the group-key as required by the cipher. Let us suppose the sensor node belongs
to 10 groups, i.e. in case of a WSN composed of almost 1024 sensor nodes and LKH grouping.
Hence, every sensor node has to store at most 31 keys in order to guarantee both forward and
backward security. Assuming a key size of 10 bytes, keys totally require 310 bytes of storage, that
is 3.1% of data memory. So, the proposed protocol is even suitable for devices with such strict
memory requirement.

As to the storage necessary for the code, the memory footprint of SHA-1 raises some concerns.
This is a general problem for hash functions: their memory footprint tends to be so large that little
space remains in memory for application code [Roman et al. 2007]. Our implementation of SHA-1
has quite a considerable memory footprint, about 23 KB, as we have spent no particular e↵ort in
optimising its code size given our primary interest being to show that LARK has an acceptable
overhead for sensor nodes. However, optimised implementations of SHA-1 do exist. A notable
example is the one in TinyECC whose footprint for Tmote Sky is about 2.4 KB [Liu et al. 2007].
This implementation is for TinyOS, and therefore can be ported into LARK in a straightforward
way.

Another possibility is to completely change the class of one-way hash functions. Instead of
using a customised hash function, such as SHA-1, one could use a hash function based on block
ciphers [Menezes et al. 1996]. While customised hash functions are specifically designed for hash-
ing, with speed in mind and completely independent of other components, the hash functions
based on block ciphers are instead conceived to exploit a block cipher component that may be
already present in the system. So doing, it is possible to provide the hashing functionality at little
additional cost. We have made an experiment in this direction by implementing the Davies-Mayer
hash [Menezes et al. 1996], using the AES block cipher with 128 bits key [National Institute of
Standards and technology 2001]. We have exploited the hardware implementation of AES pro-
vided by the CC2420 [Chipcon 2004], the Chipcon transceiver that implements 802.15.4 on Tmote
Sky sensor nodes. We have used the standalone encryption mode. The memory footprint of the
resulting implementation of the Davies-Mayer hash, including the commands to drive the stan-
dalone encryption mode, amounts to about 500 bytes which is 4 times smaller than the TinyECC
optimised version of SHA-1. Furthermore the Davies-Mayer scheme reduces the hash computation
overhead from 3.91 ms (Table II) to about 15 µs.

The above results regarding Davies-Mayer hash function are encouraging. However, attention
must be paid when dealing with hash functions based on block ciphers. Security of such functions
assumes certain ideal properties of underlying block ciphers. However, in practice real block
ciphers do not possess the same properties as random functions, e.g., they are invertible, and
properties adequate for block cipher may not guarantee a good hash function. In summary, while

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



130 · Gianluca Dini and I. M. Savino

Table III. Communication overhead per packet (in
bytes)

Field ML M?
L MT M?

T M?
J

Header+CRC 13 13 13 13 13
KData 10 20 10 20 20
KIndex 6 5 2 5 5

Total 29 38 25 38 38

necessary conditions are known, it is still unclear what properties of a block cipher are su�cient
to construct a hash function [Menezes et al. 1996].

In an aside, it has not been possible replace to Skipjack by an hardware implementation of AES
because, in the standalone mode, the CC2420 does not provide the decryption operation. This
limitation can be overtaken by using CC2420 in the inline mode but this requires to integrate
LARK with the IEEE 802.15.4 security sub-layer. Future work will be in this direction. A point
to note is that the successor of CC2420, Chipcon CC2430, does o↵er AES decryption.

We would like to finally remark that identifying, evaluating and selecting the most appropriate
hash functions and block ciphers for sensor nodes is a very important issue that is however orthogo-
nal to the scope of the paper. There is a large amount of recent, high-quality research on this issue
that LARK can exploit. Relevant examples are [Law et al. 2006; Roman et al. 2007]. However,
the implementation of LARK based on SHA-1 and Skipjack presented in the paper has the aim
at, and the indubitable merit of, showing that LARK is indeed feasible on resource-constrained
devices such as Tmote Sky sensor nodes.

As to storage overhead at KMS , it stores one master key MK to generate n sensor-keys. KMS
computes the sensor-key K

sa as follows: K
sa = f(MK, s

a

), where f is a secure pseudo-random
function and s

a

is the node identifier. KMS needs to store a key-chain for each vertex. To
avoid storing the entire key-chain, we can exploit the optimisation algorithm by Coppersmith
and Jakobsson [Coppersmith and Jakobsson 2002] to trade storage and computation cost. The
algorithm requires log

2

(l) memory cells to store a chain composed of l keys. Thus, if we assume
for simplicity that every node vertex is associated with a fixed-length chain of l keys, KMS has to
store log

2

l keys for each chain. With reference to the previous example, KMS has to store only
8 keys for each chain of 256 keys and thus it requires about 240 Kbytes to store all the keys in
order to guarantee forward and backward security.

6.2.3 Communication overhead. In this section, we analyse communication overhead of LARK
from two points of view: the size (in bytes) of rekeying messages and the number of messages. As
mentioned in Section 5.6, the field KData contains the key, whereas the field KIndex contains the
indexes of the corresponding vertices. In case of a vertex associated with a group, the field KIndex

contains also the position of the key in the chains.
As shown in Table III, the field KData of unicast messages, i.e., M?

L

, contains the key concate-
nated with its hash value. In contrast, the field KData of broadcast messages, such as M

L

or
M

T

, contains only the key without a digital signature or a MDC to guarantee the authenticity.
Assuming a key size of 10 bytes, then KData is 20 bytes-long in unicast messages, and 10 bytes-
long in broadcast messages. This reduces the communication overhead of LARK. In case of a
network composed of n members and n

g

groups, the field KIndex contains the vertices identifiers
that are log

2

(n + n
g

) bit-long. In case of a key associated with a group, KIndex contains the
position of the key in the chain, that is log

2

(l) bit-long where l is the chain length. So, the field
KIndex of a message M

L

contains the identifiers of two keys associated with groups and thus it
is 2⇥ (log

2

(n + n
g

) + log
2

(l)) bit-long. On the other side, KIndex of a message M?

L

contains the
identifier of a key associated with a group and a sensor-key. Thus, KIndex is 2 log

2

(n+n
g

)+log
2

(l)
bit-long. As shown in Table III, in case of n=1024, n

g

=256, and l=256 the packet size increases
only with 2-6 bytes. In particular, the total amount of bytes in a broadcast message is less than
30 bytes.

Finally, a fresh Initialization Vector (IV) is sent in the packets with encrypted data. In order
to reduce the communication overhead introduced by IV, we reuse some of the fields in the packet
header [Karlof et al. 2004]. In particular, IV is given by the concatenation of some fields of the
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Fig. 8. Examples of grouping.

header and KIndex.
In order to evaluate the number of messages we consider two topologies of grouping: the star -

based and the tree-based grouping. In the former case, there is a single group containing all sensor
nodes and the resulting key-graph is composed of n vertices containing the individual keys of
members and connected to one vertex containing the group-key. Hence, each sensor node stores
its sensor-key and the group-key shared by all the n members of the network(see Figure 8.a). In
this case, LARK requires n� 1 messages in case of a sensor node leaves the network to guarantee
the forward security. On the other hand, when a new sensor node joins the network LARK requires
two rekeying messages containing the trigger-key and the joining-key respectively.

In the tree-based grouping the key-graph is a tree composed of n leaves (Figure 8.b). Each leaf
associated with a sensor node and the internal nodes are associated with the the groups. In case
of balanced m-ary tree, each sensor node belongs to h where h = dlog

m

(n)e. Hence, when a sensor
node s̃ leaves, LARK requires h ⇥m � 1 rekeying messages. When a sensor node joins a group,
LARK broadcasts at most h messages conveying the trigger-keys. Furthermore, KMS needs to
initialise the joining member either o↵-line methods or by unicasting the key rings to the joining
node. It follows that our approach requires the number of messages that is a logarithmic function
of the network size.

In conclusion, the communication overhead strictly depends on the grouping so that the number
of messages ranges from O (n) to O (log n). In particular, the tree-based grouping is proposed by
LKH to increase scalability in large-scale scenarios by reducing the communication overhead while
guaranteeing forward/backward security [Waldvogel et al. 1999; Wong et al. 2000]. Whenever a
sensor node leaves or joins the group communication LKH guarantees a number of messages that
is a logarithmic function of the network size. In such a scenario our approach guarantees the same
results achieved by LKH in terms of communication overhead.

6.3 Security evaluation

In this section we discuss LARK security with respect to security of hash functions (Section 6.3.1)
and collusion attacks (Section 6.3.2).

6.3.1 On hash functions. LARK relies on the unique properties of the cryptographic one-
way function. However, hash functions tend to be broken after some years. For instance, the
complexity of a recent attack against the collision resistance property of SHA-1 is 263 [Wang
et al. 2005]. It follows that the strength of SHA-1 against collision attacks is weaker than ideal,
namely 280 [Menezes et al. 1996]. For this reason, SHA-1 is considered somewhat flawed [Roman
et al. 2007]. Similar considerations hold for MD5, too. As sensor networks are supposed to remain
operational for long periods, even several years, the possibility that a hash function may be broken
meanwhile becomes a problem.

From a purely practical point of view one can use other hash functions, namely RIPEMD-
160 [Dobbertin et al. 1996] or SHA-256, with no known flaws and that use the same basic operations
as SHA-1. It is also important to note that there is a research e↵ort for creating a new hash
function standard which is resilient against known SHA-1 attacks [National Institute of Standards
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and Technology 2005]. Furthermore, it must also be noted that most of attacks are against collision
resistance whereas the relevant property for LARK is resistance against preimage attacks. SHA-1
is still considered secure against this kind of attacks.

Notwithstanding these considerations, a good approach would be to consider a mechanism that
allows us to revoke a broken hash algorithm and replace it with a stronger one. Of course,
this is not a problem peculiar to LARK but it is an instance of the more general problem of
dynamically and remotely reconfiguring (or reprogramming) a networked embedded system in
order to make it adaptable to the changed operating conditions. Unfortunately reconfigurability
conflicts against security as it introduces new sources of vulnerabilities. Actually, the drive to
provide reconfigurability requires the ability to remotely download software after sensor nodes
have been deployed [Ravi et al. 2004]. However, downloading malicious software (including viruses,
worms, and Trojan horses) is by far the instrument of choice in launching security logical attacks.
The magnitude of this problem will only worsen with the rapid increase in the software content of
embedded systems.

We have faced with this problem by defining a security architecture that supports secure commu-
nication and secure reconfiguration in WSN. In the rest of this section we provide a brief overview
of the architecture and give some intuitions about how the services it o↵ers can be used to achieve
secure reconfiguration. For a more detailed description readers can refer to [Dini et al. 2008; Dini
and Savino 2010].

The security architecture integrates, enriches, and extends a component-based middleware called
RUNES [Costa et al. 2005]. The resulting architecture is general because it has been designed
from the ground up to be implementable on a wide range of devices, comprising low-end sensor
nodes, and the abstractions it provides can be used to build applications and higher-level services.
Furthermore, it is flexible as it accommodates di↵erent implementations of the security services
according to the specific application requirements and constraints.

The RUNES middleware hinges on basic runtime units of encapsulation and deployment, called
components. Components provide services to other components through one or more well-defined
interfaces and can have dependencies on other components. This enables the implementation and
deployment of di↵erent versions of the same component, each tailored to a specific device or op-
erating condition. Components can be dynamically added and removed. This makes it possible
to dynamically reconfigure applications according to the changing operational conditions. Recon-
figuration consists in downloading a new component from a possibly remote source, instantiating
and/or removing components at runtime, and dynamically changing the components interconnec-
tions.

On this component-based layer, we have defined a suite of security services. Those relevant
for this discussion are the Authenticated Loader and the Negotiator. The Authenticated Loader
remotely downloads components guaranteeing that they come from trusted sources. Newly down-
loaded components can be then instantiated and bound, whereas resident components may be
unbound and discarded as necessary. Of course, this reconfiguration activity has to be synchro-
nised with applications. The Negotiator fulfils this task.

In this component-model, LARK has been implemented as a component framework , i.e., a set
of inter-dependent components. One of these components implements the one-way hash func-
tion. It follows that revoking and replacing a broken hash functions consists in downloading a
new component implementing a stronger hash function, unbinding and discarding the component
implementing the broken one, and, finally, instantiating and binding the newly downloaded one
to LARK.

One complication stems from the fact that authenticated downloading of software components
in WSN must be e�cient in terms of communication, storage and computation in order to be
sustainable on sensor nodes. For this reason the Authenticated Loader uses the authenticated hash
chain, a scheme using a one-way hash function and based on the same principle as Inverted Key-
Chains. Other secure code distribution schemes use this scheme or its variations [Deng et al. 2006;
Dutta et al. 2006]. However, if the hash function is broken, authenticated downloading would be
not secure anymore. This problem can be faced in two ways. The hash function is replaced as
soon as the early signs of weakness appear. Alternatively, the Authenticated Loader component
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is implemented in two ways: an e�cient way using the authenticated key chain scheme, and an
ine�cient way not using that scheme. A sensor node is equipped with both implementations. The
e�cient implementation will be used to download application components, whereas the ine�cient
implementation will be used to replace components implementing a broken hash function. Upon
downloading, the Negotiator negotiates which implementation of the Authenticated Downloading
has to be used.

6.3.2 On collusion attacks. In a collusion attack an adversary attacks individual nodes with
the objective of incrementally aggregating keys to a level that makes it possible to violate protected
tra�c in the network. For simplicity, but without loss of generality, let us consider an adversary
that succeeds in compromising nodes belonging to group G, say node s

a

and s
b

. Let us assume
that at some point the IDS detects the compromised nodes which are then removed from the group
by distributing a new group key. However, when a node is compromised all the keys it has received
during its membership in the group fall into the adversary’s hands and the adversary may attempt
to exploit keys obtained from compromised nodes to violate the backward and forward security
requirements. Forward security is violated if the adversary succeeds in somehow combining the
keys obtained from compromised nodes, e.g., s

a

and s
b

, in such a way to obtain the new group
G key. This possibility mainly depends on the group re-keying scheme and should be avoided
altogether because, otherwise, the adversary can break the scheme and capture the network. As
to backward security, if node s

b

joins the group G after s
a

(possibly even after its leaving), and
the adversary succeeds in passing node s

b

the keys obtained from node s
a

, then node s
b

becomes
able to access all the tra�c protected by using the “old” keys. As this tra�c dates back to prior
node s

b

’s joining, then backward security is violated. It follows that backward security violation is
inevitable in a group re-keying scheme. It is the specific security-performance trade-o↵ the scheme
implements that influences the portion of past tra�c that is a↵ected by a collusion attack.

From a purely practical point of view, we initially observe that, in general, in order to com-
promise the group key of a given group the adversary has to attack individual members of that
group. As in LARK grouping follows application requirements, physically close nodes may not be
members of the same given application group. Therefore, just compromising neighbouring nodes
picked at random might be not e↵ective, and the adversary would instead need precise information
about the grouping topology. Furthermore, for an adversary it is preferable to compromise phys-
ically close nodes or, otherwise, the chances of being promptly detected would increase [Younis
et al. 2005].

In the literature, concerns from collusion attacks are mainly about forward security in order to
avoid that evicted members can work together and share their individual piece of information to
regain access to the group key [Rafaeli and Hutchison 2003]. LARK has the merit to guarantee
the forward security in presence of collusion attacks. In fact, the use of inverted key chains at
the group level guarantees that it is not practically possible to derive the next leaving keys from
previous ones, no matter how many of them have been compromised. Other approaches, such as
SHELL [Younis et al. 2006] and LiSP [Park and Shin 2004], do not guarantee forward security
in presence of colluding nodes. In fact, SHELL is based on a combinatorial approach where keys
are reused in multiple nodes and only key combinations are unique [Younis et al. 2006]. It follows
that collusion of a few nodes can reveal all the keys employed in the network to the adversary so
causing forward security to be completely broken and the consequent capture of the entire network.
Optimal assignment of keys to prevent network capturing is a classical resource allocation problem
that is NP-hard. Thus, SHELL mitigates, but not eliminates, collusion using allocation heuristics
that reduce the probability of capturing the entire network but require the knowledge of nodes’
locations in computing keys. In LiSP, a collusion attack makes it possible to compromise “future”
keys of certain clusters (see Section 7.2 for more details). It follows that forward security can be
temporarily violated in portions of the network.

As to backward security, LARK fully guarantees it with respect to isolated, uncoordinated
attacks whereas, in the case of a collusion attack, LARK exposes a segment of past tra�c. More
in detail, in case an adversary compromises node s

a

2 G and later node s
b

belonging to the same
group, then node s

b

can access the tra�c of group G that extends in the past to the moment node
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s
a

was compromised. In other re-keying schemes, a backward security violation has a minimum
impact. For instance, Key Graphs generates fresh keys for each joining and leaving event, use
key graphs for key distribution and conventional digital signatures for key authentication [Wong
et al. 2000]. Thus, upon receiving the keys of node s

a

, the colluding node s
b

becomes able to
access the tra�c corresponding to the period in which the compromised node s

a

was member of
G. Key Graphs achieves this result as it uses digital signatures for key authentication which are
are possible but not advisable on sensor nodes (see Section 7.1). Using a more lightweight key
authentication mechanism determines a di↵erent impact of a backward security violation. For
instance, LiSP uses only inverted key chains for key authentication, and, practically, does not
guarantee backward security. Actually, if the adversary obtains a group key TK

t

—a temporal key
in their parlance— from a node then he becomes able to compute all the previous group keys
TK

i

, i  t and thus access all the related past tra�c.
LARK positions itself in between these two extremes. In fact, LARK uses the key graph

mechanism for e�cient large-scale key distribution but, di↵erently to Key Graphs, uses an inverted
key chain (leaving keys) instead of digital signatures for key authentication, and, di↵erently to
LiSP, uses also a direct key chain (joining keys) to guarantee backward security to the extent
mentioned above. If LARK’s trade-o↵ is not acceptable, one has to resort to other schemes that
sacrifice performance at the benefit of increased security. For instance LEAP+ has a minimum
exposure to a backward security violation without using digital signatures for authentication.
However, it uses one µTesla authenticated broadcast to revoke a node and another confidential
broadcast to distribute a fresh key, for a total of three broadcasts, and operates under the strong
µTesla assumptions on time synchronisation and maximum round-trip time [Zhu et al. 2006].

However, we believe that the performance penalties deriving from reducing the impact of a
backward security violation down to the minimum—i.e., that of LEAP+ or Key Graphs—are not
worth given the particular application context for which LARK has been conceived. Backward
security is generally an important requirement that is crucial in applications and services based
on secure contents distribution such as secure radio, video broadcast, pay-Tv [Caronni et al.
1999; Sherman and McGrew 2003; Wong et al. 2000]. Intuitively, backward security prevents
a service subscriber to access contents broadcast prior to its subscription. However, we believe
that backward security is not so crucial for the radically di↵erent application context for which
LARK has been conceived, namely WSANs (Section 2). In WSANs, where applications deal with
monitoring and control [Årzén et al. 2007; Bicchi et al. 2008], integrity is a top priority [Cárdenas
et al. 2009]. Thus in WSANs forward security, and in particular the ability to force a compromised
node to leave, acquires more relevance. Of course, this does not mean that backward security is
not important at all in WSANs. However, the e↵ect of a backward security violation on integrity
would be not critical. Actually, the adversary could attempt to inject messages by means of “past”
keys but they will be discarded by the monitoring and control algorithm.

7. RELATED WORK

Several group key management systems for WSNs have been proposed [Choudhary et al. 2007;
Eltoweissy et al. 2004; Eltoweissy et al. 2005; Park and Shin 2004; Son et al. 2007; Wang and
Ramamurthy 2007; Younis et al. 2006; Zhu et al. 2006]. Some take a centralised approach as
LARK [Eltoweissy et al. 2004; Eltoweissy et al. 2005; Younis et al. 2006; Perrig et al. 2001; Park and
Shin 2004; Younis et al. 2006; Zhu et al. 2006], whereas others a distributed one [Choudhary et al.
2007; Zhu et al. 2006]. Distributed versus centralised key group management is an open debate.
In a centralised scheme, the key distribution centre constitutes a single-point-of-failure and may
cause a performance bottleneck. Of course, this is not the case in distributed schemes. However,
distributed schemes typically establish pair-wise keys first, then group keys with geographical
neighbours, and, finally, a network-wide key. This bottom-up approach to key establishment is
conducive to increase the computation and communication costs with respect to the centralised
one. Actually, in a centralised scheme, the new keying material is generated by the key distribution
centre so minimising the computation overhead for sensor nodes and the communication overhead
is limited to the one-time delivery cost of new keys.

Similarly to LARK, the scalability problem of group key management for large scale WSNs with
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joins and leaves has been addressed by all these schemes. Both these schemes and LARK make
use of hierarchy to solve the scalability problem. However, the similarity ends here. LARK and
these schemes di↵er from both the approach and the architectural point of view.

First of all, approaches and objectives are very di↵erent. The other schemes use hierarchy,
i.e., clustering, as a network topology control technique [Choudhary et al. 2007; Park and Shin
2004; Zhu et al. 2006]. They group neighbouring sensor nodes and hierarchically merge groups
to establish a network-wide shared key [Choudhary et al. 2007; Zhu et al. 2006]. This features
a bottom-up approach in which the application level “inherits” the group topology fixed by the
network management level. As discussed in Section 2, this is adequate for mainstream WSNs
but is not for the emerging WSANs. In contrast, LARK takes a radically di↵erent, top-down,
approach and uses hierarchy as a means to specify application-defined secure groups. This means
that a particular group topology is defined according to the applicative needs and that the group
key management system has to manage group keys according to it.

Furthermore, system architectures are very di↵erent too. To fix ideas, let us consider a tree
hierarchy with a single root. In LARK, the hierarchy is logical and consists of keys, with sensor
node keys at the leaves, the group key at the root, and sub-group keys elsewhere. There is only
one key server KMS (although it can be implemented in a distributed way, if necessary), there
are no security agents, e.g., cluster-heads, and each sensor node is given multiple keys (the sensor
key, the group key, and some sub-group keys). LARK requires neither an a priori secure service
nor the knowledge of the sensor nodes locations or the network topology.

In the other schemes, the hierarchy is physical and consists of sensor nodes at the leaves and
with multiple levels of security agents above. For each tree node, the tree node (an agent) and
its children (sensor nodes or lower level agents) form a subgroup (cluster) and share a subgroup
key. Depending on the scheme there may be a globally shared group key or not. For instance,
in LiSP there is not such a key and thus join/leave in a subgroup does not a↵ect the other
subgroups [Park and Shin 2004]. Furthermore, certain schemes assumes the existence of very strong
secure services or make strong assumption upon sensor deployment and topology. For instance,
LEAP+ [Zhu et al. 2006] resorts to an authenticated broadcast primitive such as µTesla [Perrig
et al. 2001]. That is, LEAP+ requires that at least a basic form of secure group communication is
already solved by other means. Wang’s et al.’s scheme uses an applicative notion of groups but it
resorts to a variation of µTesla too [Wang and Ramamurthy 2007], Exclusion Basis System (EBS)
proposes a combinatorial clustering that attempts to minimise the number of rekeying messages
while minimising the number of keys stored by each sensor node [Eltoweissy et al. 2004; Eltoweissy
et al. 2005; Younis et al. 2006]. In order to achieve this goal, EBS organises nodes into overlapping
groups that are however completely unrelated to the application needs [Eltoweissy et al. 2004].
Furthermore, two EBS-based rekeying schemes require the knowledge of the positions of sensor
nodes [Eltoweissy et al. 2005; Younis et al. 2006]. Implementing a location service in WSNs,
especially a secure one, is quite a di�cult task.

In WSNs, hierarchies of keys are used by the Topological Key Hierararchy (TKH) scheme [Son
et al. 2007], and the Tree-based Group Polynomial Key Distribution (TGPKD) scheme [Choudhary
et al. 2007]. TKH extends LKH by constructing the key tree hierarchy using topological informa-
tion on the sensor network. Basically, TKH formalises the intuition of placing physically adjacent
sensor nodes as close as possible in LKH so as to reduce communication overhead. However, TKH
does not face with key authentication. TGPKD does not even address node revocation [Choudhary
et al. 2007].

Key Graphs [Wong et al. 2000] and LiSP [Park and Shin 2004] are two systems that display
certain similarities with LARK. Key Graphs has the same architecture as LARK and similarly
uses graphs of keys to specify secure groups. Key Graphs achieves a rekeying communication
overhead comparable to LARK’s. However, in contrast to LARK, Key Graphs uses digital sig-
natures to prove key authenticity which are not suitable for WSNs. As to LiSP, it proposes a
periodic group rekeying and key recovery scheme that uses an inverted key chain for key authen-
tication. Therefore, LARK and LiSP achieve a comparable performance when they authenticate
newly received keys. However, the suggested LiSP’s rekeying scheme incurs in a high rekeying
communication overhead. Furthermore, LiSP raises security concerns. In the next sections we
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make a more detailed comparison between LARK and Key Graphs and LiSP, respectively.

7.1 Comparison with Key Graphs

LARK takes inspiration from Key Graphs which is perhaps the scheme it is most natural compare
LARK to. Both LARK and Key Graphs use graphs of keys to specify secure groups. However,
Key Graphs restricts itself to two special classes of key graphs, namely a star Key Graphs and a
tree key graph. Section 6.2.3 shows that these classes represent extreme cases from the standpoint
of communication overhead. In contrast, LARK pushes the concept of key graphs further and uses
it as a means to specify secure groups as dictated by applicative requirements. General classes of
key graphs can be specified in LARK. The actual communication overhead will depend on specific
Key Graphs topology but it will be anyway constrained within O(n) and O(log n).

Another di↵erence between Key Graphs and LARK is the network environment for which each
scheme has been proposed. While LARK has been proposed for a WSN, Key Graphs has been
conceived for a conventional desktop/server computing network. The main impact of the network
environment is in the rekeying strategy. Key Graphs defines three di↵erent rekeying strategies:
user-oriented, key-oriented, and group-oriented. Details apart, in the key-oriented strategy a
rekeying message carries just a new key, whereas in the other strategies a rekeying message may
carry several keys. In a conventional network environment, a message is so large as to contain one
or more keys. Therefore, user-/group-oriented strategies can be employed. In contrast, in a WSN,
a network message is generally smaller (40 bytes in TinyOS) and thus can contain only a single
key. For this reason, we have used a key-oriented rekeying strategy. Using this strategy, given a
certain key graph topology, LARK and Key Graphs use the same number of rekeying messages
when this strategy is used. However, the message size and the computing overhead to authenticate
the key contained in a rekeying message is much greater in Key Graphs than LARK.

Yet another di↵erence between Key Graphs and LARK is the key authentication mechanism
employed. Key Graphs uses conventional digital signatures, namely RSA [Rivest et al. 1978], for
authentication purposes. In LARK the use of digital signatures is possible but not advisable.
With reference to [Piotrowski et al. 2006], the estimated time and power consumption for RSA-
1024 signature verification on Tmote Sky are 0.22 s and 2.70 mJ, respectively, whereas for ECC-160
they are 1.02 s and 12.41 mJ. The key authentication mechanism based on inverted key-chains
employed by LARK requires the computation of a hash function to verify the authenticity of a key.
On a Tmote Sky, SHA-1 consumes around 0.814 µJ/byte [Mǐsić 2008]. Thus, in the case of LARK
128-bit keys, the time and power consumption for SHA-1 are about 3.91 ms (Table II) and 13 µJ,
respectively. It follows that LARK’s key authentication based on key chains is about 1÷ 2 orders
of magnitude faster than RSA-1024 and ECC-160 and consumes 2 ÷ 3 orders of magnitude less
energy. In addition, a digital signature constitutes an additional payload of a rekeying message. In
the case of RSA-1024 bit, the digital signature is 128 bytes, whereas in the case of ECC-160, the
digital signature is 40 bytes. CC2420 requires 231.42 µJ to receive an RSA-1024 digital signature
and 73.32 µJ to receive an ECC-160 signature. All of this has a strong negative impact on both
the network lifetime and the maximum achievable duty-cycle [Piotrowski et al. 2006].

7.2 Comparison with LiSP

Di↵erently from LARK, LiSP uses a physical hierarchy. LiSP organises the network in clusters
(groups in their parlance), each one managed by a capable node called group-head. A group-
head manages a group-key to ensure backward and forward security. The group-head refreshes
the group key periodically by broadcasting in the group the new key encrypted by means of the
current one. The authenticity of the new group key is proven by means of an inverted key chain
mechanism. However, when a sensor node leaves, the group-head unicasts the new group key to
every sensor node in the group encrypted by means of the node key.

Upon periodically refreshing a group key, LiSP and LARK use the same number of rekeying
messages, namely one broadcast, and have the same key authentication overhead, namely one hash
function computation. However, LiSP requires O(n) to rekey a group after a leave. A possibility
to manage this overhead is to make small groups. However, this increases the number of groups
and group heads and thus the overall scalability and cost of the system. Another possibility is to
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let LiSP use LARK to improve management of leaves. Every group-head could define a tree key
graph where the LiSP inverted key chain is associated with the graph root. So doing, the rekeying
overhead could be reduced to O(log n). A reduced overhead allows larger group size, a reduced
number of groups and group-heads, and thus increased scalability and reduced costs.

In LiSP, group-heads manage their groups independently. There is no global network key that is
shared across groups. Therefore, the join/leave in a group does not a↵ect another one. However,
group-heads share the same key chain in order to support inter-group communication. These
design choices are justified by scalability purposes but raise security concerns.

First of all, at a given time, two groups may have di↵erent group keys. If the groups have
experimented di↵erent numbers of leaves, their group-heads have picked the current group keys
from di↵erent positions in the chain. Therefore, an adversary can exploit this fact to compromise
a sensor node in a group, steal its group key, and reuse that key in an other group that is “behind”,
i.e., picks keys from positions in the key chain that are closer to the chain-head. Furthermore, if a
group-head is compromised, LiSP is completely compromised because the group-head knows the
key chain from which all the group keys are picked. This implies that group-heads are trusted
entities that have to be protected by means strong security measures. This, together with the
scalability limitations, makes the system even more expensive.

In contrast, LARK maintains a global notion of group key that is refreshed whenever any sensor
node is compromised. It follows that group key management provided by LARK is more secure
than LiSP. If scalability concerns raise, KMS can be replicated [Reiter 1996a; 1996b]. In this case,
several trusted entities are needed but the trusted computing base in LiSP would be much larger
than LARK as LiSP needs as many trusted entities as group-heads.

8. CONCLUSIONS

We have presented LARK an heterogeneous and dynamic group rekeying scheme [Eltoweissy et al.
2006]. LARK is heterogeneous because, being centralised, nodes of the network are assigned
di↵erent roles. A key management server has the task of revoking the current key, and generating
and distributing a new one, whereas sensor nodes have all the same task of verifying the new
key authenticity. LARK is also dynamic as it advocates key rekeying, i.e. key revocation and
redistribution, as a mean to achieve resilience to attacks in long-lived networks.

LARK supports quite a general group model where groups can be hierarchical and partially
overlapping. LARK receives a a group topology that reflects the application needs and manages
rekeying at single-group level. We have formally shown that LARK guarantees backward and
forward security. Performance evaluation shows that LARK is scalable and e�cient and thus
attractive for large scale, highly dynamic WSNs comprising even low-end devices such as TMotes
Sky sensor nodes. Security, scalability and e�ciency of LARK hinge around the integration of
key graphs and key chains. The former makes it possible to address communication scalability by
reducing the number of rekeying messages whereas the latter makes key authenticity verification
e�cient by requiring only hash functions and symmetric ciphers.
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