
A performance evaluation method
for WSNs security

Roberta Daidone
Dipartimento di Ingegneria dell’Informazione

University of Pisa, Pisa, Italy
Email: r.daidone@iet.unipi.it

Gianluca Dini
Dipartimento di Ingegneria dell’Informazione

University of Pisa, Pisa, Italy
Email: g.dini@iet.unipi.it

Abstract—The amount of Wireless Sensor Network applica-
tions requiring security is getting higher and higher and also
developers that are not security experts are often required to
secure their applications. Many times they do it without any
consciousness of the security performance trade-off arisen by
this operation.In this paper we present a method for perfor-
mance evaluation of a modular security architecture for WSNs.
Our method evaluates the costs that have to be paid when
introducing security, in terms of memory occupancy, network
performance and energy consumption. Knowing these indexes
leads to awareness of security costs and helps in fine tuning
of security performance trade-offs. A designer may apply our
method to know the impact on performance of the security
modules he needs. Also, we present performance data collected
by applying our method on the implementation of PLASA, a
modular security architecture we have designed and evaluated.

Index Terms—security; WSN; performance.

I. INTRODUCTION
Security services typically hinges on cryptographic pro-

tocols, which are selected on the basis of security require-
ments that have to be achieved by the protocol. When the
application involves resource constrained devices, a resource
greedy security protocol may cause unpredicted delays and/or
erratic behaviors and the ability to operate within time bounds
could be disrupted. It follows that, even if the control system
is originally designed to be stable in presence of network
delays, the additional cost due to security may lead to system
instability. Knowing security costs in advance is vital in order
to trade off security and performance.

In this paper we present a method for performance evalua-
tion of a modular security architecture for WSNs. Our method
evaluates the costs that have to be paid when introducing secu-
rity, independently from the application scenario at hand. The
metrics we are considering are memory occupancy, network
performance and energy consumption. Knowing these indexes
leads to awareness of security costs and helps in fine tuning of
security performance trade-offs. Our method is designed for a
modular security architecture, so a developer may apply our
method to know the impact on performance of the security
modules he needs. We describe our method referring to
PLASA, a modular and transparent security suite we have
designed to provide WSNs with secure communications, key
management and secure bootstrapping.

We believe that the method is general enough to be
readapted to any other security architecture having modularity

characteristics. We apply our method to evaluate the impact
of security on performance of PLASA modules and report
collected results as a study case.

This paper is structured as follows. In Section III we present
the main characteristics of the security architecture we want
to evaluate. In Section IV we provide an overview of metrics
we have considered for performance evaluation and present
the method for evaluating each one of them. In Section V we
present performance data collected by applying our method on
a real implementation of PLASA. Finally, in Section VI we
draw our conclusive remarks.

II. RELATED WORK
An important branch of research has focused on the impact

of security on performance. For instance, several works have
investigated the cost of using off-the-shelf ciphers, encryption
modes, and authentication algorithms on wireless sensor nodes
in terms of energy consumption, storage and computing over-
head. Relevant examples are [1], [4], [6], [7], [3], [5], [9].
Xiao et al. and Zhu et al. explored first the impact of security
on performance [11], [12]. However, these works greatly
differ from ours for several reasons. They both investigate the
cost of a software implementation of the ciphers, encryption
modes, and authentication algorithms. Such an investigation
only focuses on the performance implications and does not
provide a method for performance evaluation. In contrast,
we present a method that is designed to be as general as
possible and that can be applied to many platforms and many
application scenarios because it is independent from all of
them. The set of experiments we performed on real sensor
nodes with PLASA are just a validation of our method and
should not be considered the only application of the method.

III. PLASA ARCHITECTURE
PLASA consists of four main components, i) the Authen-

tication module, ii) the KeyDB, iii) the Key Management
module, and iv) the Secure Communication module. Figure
1 shows these modules stay between the application and the
communication stack, but the structure can be easily moved
between any other layers of the network stack.

The Authentication module is responsible for secure boot-
strapping of sensor nodes after deployment. The Authentica-
tion module objective is to assure that only authorized nodes
can access network communication. Since communications are



Fig. 1. PLANET security architecture overview.

secured by means of cryptographic keys, the Authentication
module aims to distribute cryptographic keys to authorized
nodes. To distribute keys in a secure manner, the Authenti-
cation module relies on a pre-shared secret that is generally
loaded into each network member before network deployment.

The KeyDB is organized as a distributed database to store
and retrieve cryptographic keys. It acts as a bridge between
different modules of PLASA that access the KeyDB to perform
security operations. As shown in Figure 1, its design allows to
setup, exchange and refresh cryptographic keys without either
creating multiple copies of the same key or causing extra
overhead due to key exchange from one module to another.
The KeyDB module of each node consists of a Key Table.
Entries of the Key Table have the same structure: i) the KeyID
field, used to identify the key within the Table, ii) the key field,
storing the cryptographic key, and iii) the Flags field, used to
specify some characteristics of the key usage (e.g. pairwise
key, group key, key encryption key etc.).

The Key Management module is responsible for refreshing
or renewing cryptographic keys periodically or on demand
when certain events happen. As shown in Figure 1, this
module includes two submodules: i) the server, acting as
a Key Manager that broadcasts cryptographic keys to be
renewed according to the Key Management protocol, and ii)
the client, receiving updates from the Key Manager and taking
appropriate actions. The major part of network nodes that
implement the Key management module act as clients, while
those implementing the server part are special entities, and in
general has no other roles.

The Secure Communication module is called STaR (Security
Transparency and Reconfigurability). STaR is the heart of
PLASA, and extends a work presented in [2]. STaR secures
communication in a highly adaptable way, thanks to three
layers of data abstraction: i) traffic flows, ii) security policies,
and iii) labels. A traffic flow is a set of application messages
handling the same data or providing the same service. A
security policy determines what kind of security algorithm is
applied by STaR to a certain traffic flow. A label determines
the mapping between a traffic flow and a security policy. All
packets belonging to a given traffic flow can be associated
to a common label. Thanks to the label, incoming packets
can be unsecured upon being received, according to the
security policy associated to the traffic flow they belong to.

The STaR component intercepts both incoming and outgoing
traffic, segments it into traffic flows, and secures or unsecures
them according to the corresponding policies.

STaR provides transparency of security because exports
the same interface of the underlying communication stack.
Also, STaR assures reconfigurability by allowing users to
dynamically change, enable and disable security policies.
STaR modular design allows to i) extend it with any other
module, ii) move STaR between any layers of the network
stack, iii) adapt its interfaces to any communication paradigm.

Fig. 2. Example of packet processed by STaR.
Figure 2 shows a packet processed by STaR. The packets ar-

rives to STaR with a header and a payload. Then, STaR builds
and inserts the STaR Control Field between the header and
the payload of the packet. The STaR Control Field carries the
Label subfield which contains the label associated to the traffic
flow of the packet, the PolicyID subfield which contains the
identifier of the security policy associated to the label, and
the Age subfield, which specifies the age of the mapping of
the label to the policy ID. According to the security policy in
use, a packet can have its payload encrypted, can be appended
with an authentication trailer, or can have both payload and
authentication trailer encrypted.

Fig. 3. STaR architecture.
As shown in Figure 3, the STaR component consists in 5

sub-components, namely StarConfig, StarFlowClassifier, Star-
ToApplication, StarToCommunication, and StarEngine. The
StarFlowClassifier classifies packets into traffic flows, and
determines the associated label. Its implementation consists
in a mapping of traffic flows to labels. Application traffic
flows can be divided in many ways (e.g. active message
types, destination address etc.). The StarConfig component
allows users to dynamically enable/disable security policies,
and change their association to traffic flows, thus providing
reconfigurability at runtime. The StarToApplication component
provides the application with the same communication inter-
face exported by the communication stack. The StarToCommu-
nication component makes it possible to connect STaR to the
underlying communication stack. The StarEngine component
encapsulates the mechanism to process security policies.

IV. PERFORMANCE METRICS
In the following we consider four performance metrics that

are usually affected by security costs, and provide a method



to evaluate them.
The amount of ROM and RAM memory required by se-

curity modules may be an issue, especially for devices that
cannot load or unload modules at runtime. In these cases,
knowing the memory occupancy of each security algorithm
and security data structure is vital to assure that the system
can accommodate all the needed security material. Also, the
amount of entries in security data structures may be a limit
for network scalability, so knowing in advance the scalability
thresholds allows for designing the network in a way that is
more appropriate from the security standpoint.

Security brings in two latency contributions: the security
processing overhead dproc, and the security communication
overhead dcomm. The security processing overhead consists
in a fixed delay due to the processing required by security
operations. Generally speaking, such a processing cannot be
overlapped with any other operation because it affects the
packet structure and involves computationally heavy opera-
tions. The security communication overhead consists in the
time necessary to transmit the additional fields or packets
brought about by security.

The increase in energy consumption due to security is
a consequence of the security processing overhead and the
security communication overhead. During the extra time re-
quired to perform security computations and extra security
transmissions, an additional amount of power is consumed.
Since WSNs usually involve battery powered devices deployed
in unattended environment, such an increase in energy con-
sumption have to be kept into account when evaluating battery
characteristics and deployment time.

A. Evaluation method of memory footprint
In order to evaluate memory consumption of PLASA, we

take advantage from its modular structure to wire PLASA sub-
modules separately. The wiring method and notation for eval-
uating memory occupancy is described in the following.

• MBasic is the image size in bytes of the original network
stack, also including the application we want to secure.
This value is evaluated experimentally by just removing
the wiring of any PLASA module.

• MKeyDB is the image size in bytes of the KeyDB module.
This value is evaluated experimentally by wiring the
KeyDB module to the original network stack, obtain-
ing the memory footprint MOutput and then computing
MKeyDB = MOutput −MBasic.

• MRekeying is the image size in bytes of the Rekeying
module. This value is evaluated experimentally by wiring
the KeyDB and Rekeying modules to the original network
stack, obtaining the memory footprint MOutput and then
computing MRekeying = MOutput −MBasic −MKeyDB.

• MAuth is the image size in bytes of the Authentication
module. This value is evaluated experimentally, start-
ing from the memory footprint MOutput of the orig-
inal network stack, including the application, and the
KeyDB module, wired to the Authentication module. We
computed MAuth = MOutput −MBasic −MKeyDB.

• MSTaR is the image size in bytes of the STaR module.
This value is evaluated experimentally, starting from the
memory footprint MOutput of the original network stack,
including the application, and the KeyDB module, wired
to the STaR module. The STaR module in this case does
not include any cryptographic algorithm. We computed
MSTaR = MOutput −MBasic −MKeyDB.

• MSkipjack is the image size in bytes of the Skipjack
submodule that can be provided by the STaR module.
This value is evaluated experimentally, starting from
the memory footprint MOutput of the original network
stack, including the application, and the KeyDB mod-
ule, wired to the STaR module. The STaR mod-
ule in this case includes Skipjack. We computed
MSkipjack = MOutput −MBasic −MKeyDB −MSTaR.

• MSHA−1 is the image size in bytes of the SHA-1
submodule that can be provided by the STaR mod-
ule. This value is evaluated experimentally, starting
from the memory footprint MOutput of the origi-
nal network stack, including the application, and the
KeyDB module, wired to the STaR module. The
STaR module in this case includes SHA-1. We computed
MSHA−1 = MOutput −MBasic −MKeyDB −MSTaR.

• MAES is the image size in bytes of the AES-128
submodule that can be provided by the STaR module.
This value is evaluated experimentally, starting from
the memory footprint MOutput of the original network
stack, including the application, and the KeyDB mod-
ule, wired to the STaR module. The STaR mod-
ule in this case includes AES-128. We computed
MAES = MOutput −MBasic −MKeyDB −MSTaR.

However, the space necessary to allocate executable is not
the only storage cost that we have to pay in order to use
the security sublayer. The security data structures does not
influence ROM occupancy, but RAM occupancy and their size
grows with the number of nodes and keys. In general, for
RAM occupancy, there is no limit, but the physical capacity,
to the amount of memory that a software component may
use. However, it is not recommended to fill up the entire
RAM with the component variables, because some space is
usually needed for the stack. There is no straightforward way
to calculate the amount of RAM application needs. However,
as a rule of thumb, you should better leave at least 500 byte, or
maybe 1 KB, empty. Otherwise you can get a stack overflow
and the sensor will hang or do erratic things. Regardless the
actual value of the threshold, the important point to capture
here is that in memory scarce devices, the amount of memory
necessary for security data structures may constitute a limit to
the overall system scalability.
B. Evaluation method of processing overhead

The security processing overhead is strictly related on pro-
cessing capabilities of the device implementing PLASA mod-
ules. Our evaluation method considers PLASA modules sep-
arately. In order to get an evaluation that is as realistic
as possible, we recommend to evaluate such a delay by
performing real experiments on real hardware.



The PLASA processing overhead time interval is the extra
time required to process the packet according to the chosen
security policy. Our evaluation method consists in adding a
timer module in the original PLASA architecture. The timer
instance starts at the beginning of the security operation we
want to evaluate, and then stops when the security operation is
accomplished. The value collected from the timer can be either
printed or inserted as payload of the next packet. Inserting tim-
ing information as packet payload is a recommended approach
for instance, when the print() function is not supported and
data cannot be easily collected. We recommend to consider a
confidence interval of at least 95%.

The following are a set of parameter that should be kept into
account to have a thorough processing overhead evaluation of
the main operations performed by PLASA.

• dgetKey
proc is the time required by the KeyDB module to

retrieve a key from the right entry of the KeyDB.
• dsetKey

proc is the time required by the KeyDB module to
insert a key as a KeyDB entry.

• dnodeInitproc is the time needed to initialize the node and
generate cryptographic material. Since the needed cryp-
tographic material changes from a protocol another, we
recommend to evaluate dnodeInitproc for each protocol pro-
vided by the Authentication module.

• dinitKey
proc is the time needed to initialize a node with some

cryptographic material generated according to the chosen
protocol. We recommend to evaluate dinitKey

proc for each
protocol provided by the Key Management module.

• dupdateKey
proc is the time needed to refresh some crypto-

graphic material that a node has on board. We recommend
to evaluate dupdateKey

proc for each protocol provided by the
Key Management module.

• drequestKey
proc is the time needed to elaborate a key retrans-

mission to recover from key losses.
• dsecureproc is the time needed to secure a packet according

to the security operations specified by a certain label.
We recommend to evaluate dsecureproc for each cryptographic
algorithm provided by STaR.

• dunsecureproc is the time needed to unsecure a packet ac-
cording to the security operations specified by a certain
label. We recommend to evaluate dunsecureproc for each
cryptographic algorithm provided by STaR.

• dretrieveLabelproc is the time needed to retrieve the label
associated to the traffic flow of a certain packet.

• dretrievePolicyproc is the time needed to retrieve the security
policy associated to the label in the STaR module.

• dchangePolicyproc is the time needed to update the security
data structures to change the policy associated to a certain
label in the STaR module.

C. Evaluation method of communication overhead
The extra transmission overhead can be computed an-

alytically considering the bit rate provided by the hard-
ware we are considering, the amount of extra bits to be
transmitted in a secured packet, or the size of extra pack-
ets required by security protocols. We evaluate dcomm as
dcomm = packet size/bit rate

The following are a set of parameter that should be kept
into account to have a thorough communication overhead
evaluation of the main operations performed by PLASA.

• dnodeInitcomm is the time needed to perform transmissions re-
quired by the protocol implemented in the Authentication
module. Since the initialization protocol is performed una
tantum, even if we get a high value for this parameter,
we consider it as affordable.

• dupdateKey
comm is the time needed to transmit messages to

refresh some cryptographic material that a node has on
board. We recommend to evaluate dupdateKey

comm for each
protocol provided by the Key Management module. Also
in this case, if we get a high value for this parameter,
we consider it as affordable, because this operation is
performed sporadically.

• drequestKey
comm is the time needed to transmit a key retrans-

mission request to recover from key losses.
• dsecurecomm is the time needed to transmit the security related

fields that are added to secured packet. We recommend
to evaluate dsecurecomm for each cryptographic algorithm pro-
vided by STaR.

• dchangePolicycomm is the time needed to transmit the recon-
figuration packet that triggers the security policy update
procedure in the STaR module.

D. Evaluation method of energy consumption
The extra energy consumption is a consequence of both

security processing and security communication overhead, and
can be computed analytically, considering the power consumed
by the hardware component that performs the security opera-
tions or transmits security-related packets and fields.

We recommend to consider single energy contributions and
evaluate each one as Ei = Pi × di.

Let di be the delay due to the considered operation i. Let
Pi = Vi × Ii be the single power contribution, i.e. the product
between voltage (Vi) and current (Ii) of the component that
performs the security operation under study. We report a list
of the energy consumption contributions of PLASA modules
that we recommend to keep into account.

• EnodeInitcomm is the energy consumed to perform transmis-
sions required by the protocol implemented by the Au-
thentication module. Since the initialization protocol is
performed una tantum, a high value for this parameter is
considered affordable as it represents the communication
overhead of a whole protocol.

• EupdateKey
comm is the energy consumed to transmit messages

to refresh some cryptographic material that a node has on
board. We recommend to evaluate EupdateKey

comm for each
protocol provided by the Key Management module.

• ErequestKey
comm is the energy consumed to transmit a key

retransmission request to recover from key losses.
• Esecurecomm is the energy consumed to transmit the security

related fields that are added to secured packet. We recom-
mend to evaluate Esecurecomm for each cryptographic protocol
provided by STaR.

• EchangePolicycomm is the energy consumed to transmit the
reconfiguration packet that triggers the security policy



update procedure in the STaR module.
• EgetKey

proc is the energy consumed by the KeyDB module
to retrieve a key from the right KeyDB entry.

• EsetKey
proc is the energy consumed by the KeyDB module

to insert a key as a KeyDB entry.
• EnodeInitproc is the energy consumed to initialize the node

and generate cryptographic material. Since the needed
cryptographic material changes from one protocol to
another, we recommend to evaluate EnodeInitproc for each
protocol provided by the Authentication module.

• E initKey
proc is the energy consumed to initialize a node with

the cryptographic material generated according to the
chosen protocol. We recommend to evaluate E initKey

proc for
each protocol provided by the Key Management module.

• EupdateKey
proc is the energy consumed to refresh some

cryptographic material that a node has on board. We
recommend to evaluate EupdateKey

proc for each protocol
provided by the Key Management module.

• ErequestKey
proc is the energy consumed to elaborate a key

retransmission to recover from key losses.
• Esecureproc is the energy consumed to secure a packet accord-

ing to the security operations specified by a certain label.
We recommend to evaluate Esecureproc for each cryptographic
algorithm provided by STaR.

• Eunsecureproc is the energy consumed to unsecure a packet
according to the security operations specified by a certain
label. We recommend to evaluate Eunsecureproc for each
cryptographic algorithm provided by STaR.

• EretrieveLabelproc is the energy consumed to retrieve the label
associated to the traffic flow which the packet belongs to.

• EretrievePolicyproc is the energy consumed to retrieve the se-
curity policy associated to the label in the STaR module.

• EchangePolicyproc is the energy consumed to update the secu-
rity data structures to change the policy associated to a
certain label in the STaR module.

V. EVALUATION STUDY CASE

We have implemented the security features described in
Section III for TinyOS 2.1.1, with reference to the Tmote
Sky motes [8] and the CC2420 chipset [10]. At the moment,
we have implemented the Skipjack encryption module and
the SHA-1 module for integrity hashing, AES-128 hardware
security.

The amount of ROM memory available on Tmote Sky motes
is 48 KB, and may represent a severe constraint while dealing
with complex modules like those composing PLASA. In
order to evaluate memory consumption on Tmote Sky motes,
we considered the TinyOS image size wiring the PLASA
submodules separately, according to the method presented in
Section IV-A. Table I provides more detailed information on
memory occupancy. We believe this amount is reasonable
with respect to the available memory. Also, our study cases
show that PLASA modular implementation allows for saving
memory by loading only a few of the available modules,
provided that it is well known what modules are needed.

The PLASA processing overhead delay (dproc) has been

Memory Memory
occupancy (bytes) occupancy (%)

Authentication 2720 5.67module
STaR 1610 3.35

StarEngine 1748 3.64(Skipjack)
StarEngine 3442 7.17(SHA-1)
StarEngine 1444 3.01(HW AES-128)

KeyDB 198 0.41module
Rekeying 288 0.60client

TABLE I
DETAILED MEMORY OCCUPANCY.

evaluated experimentally for each of the involved security
features of our PLASA TinyOS implementation, according to
the method presented in Section IV-B. In our experiments,
we observed one sender device at a time transmitting secured
packets whose payload is 8 bytes in size. In order to increase
the accuracy of our results, we performed 10 repetitions of
20 transmissions for each experiment. Table II provides an
overview of dproc contributions for PLASA modules. For each
row in the table, we report the amount of time required by each
PLASA module to perform its operations.

PLASA module dproc (µs) Standard
deviation (µs)

Secure 98804.8 12987.93bootstrapping
STaR 96 0

STaR Skipjack 1217.6 7.16encryption
STaR SHA-1 based 33212.8 30.97authentication

STaR Skipjack encryption 34318.4 54.42and SHA-1 based authentication
STaR hardware AES-128 based 216 14.22encryption and authentication

Rekeying 924.8 22.98

TABLE II
PLASA dproc CONTRIBUTIONS FOR PLASA MODULES.

In order to evaluate the transmission overhead analytically,
we have considered the time required to transmit different
kinds of packets at different stages of the PLASA secured
WSN application, with a bit rate of 250 Kb/s and applied the
method described in Section IV-C.

Table III provides an overview of the transmission overhead,
The value of the secure bootstrapping entry is related to the
whole protocol and, since it runs just once after deployment,
we consider such contribution as affordable. The dtx contribu-
tion of rekeying packets is not negligible, but these packets are
transmitted for periodic key refresh only. The rekeying period
can be tuned in order to trade-off security and performance.

Energy consumption has been evaluated considering the
method reported in Section IV-D and the Tmote sky processing
unit and CC2420 components. The values of absorbed current
referring to the Tmote sky processing unit and CC2420 com-
ponents are taken from the respective datasheets [8], [10]. The



PLASA module dtx (µs) Extra bytes
Secure 2976 93bootstrapping
STaR 32 1

STaR Skipjack 256 8encryption
STaR SHA-1 640 20authentication

STaR Skipjack encryption 896 28and SHA-1 authentication
STaR hardware AES-128 512 16encryption and authentication

Rekeying 1504 47

TABLE III
PLASA dtx CONTRIBUTIONS FOR PLASA MODULES.

only exception is the value of the absorbed current during
hardware security operations that has been taken from [7].

PLASA module

Processing Transmission
Pproc = 1.08mW Ptx = 31.32mW
dproc Eproc dtx Etx
(µs) (nJ) (µs) (nJ)

Secure 98804.8 106709.18 2976 93208.32bootstrapping
STaR 96 103.68 32 1002.24

STaR SkipJack 1217.6 1315.01 256 8017.92encryption
STaR SHA-1 33212.8 35869.82 640 20044.8authentication

STaR SkipJack

34318.4 37063.87 896 28062.72encryption
and SHA-1

authentication
Rekeying 924.8 2.81 1504 47105.28

PLASA module

Processing Transmission
Pproc = 38.14mW Ptx = 31.32mW
dproc Eproc dtx Etx
(µs) (nJ) (µs) (nJ)

STaR hardware

216 8238.24 512 16035.84AES-128
encryption and
authentication

TABLE IV
PLASA ENERGY CONSUMPTION CONTRIBUTIONS.

Table IV provides an overview of energy contributions for
PLASA modules. Considerable contributions in energy con-
sumption for both processing and transmission are due to the
standard encryption and authentication algorithms. Note that,
while hardware security improves network performance, it has
comparable values from the energy consumption standpoint.
This is due to the fact that the CC2420 chipset consumes
more current than the Tmote Sky processing unit. On the other
hand, since hardware security is faster than software security,
the reduced time of usage balances the increase of current
consumption, allowing us to obtain energy consumptions that
are comparable in hardware and software security operations.

VI. CONCLUSION
We have presented a general method to evaluate the impact

on performance of security. Our method is deeply described
considering PLASA, a modular security architecture we have
designed for WSNs. More in details, we have developed a
novel approach that mixes experimental and analytical evalu-
ation of each single element of our security architecture. The
impact of security on performance is evaluated considering
four metrics. Namely, memory footprint, security processing

overhead, security communication overhead and energy con-
sumption. The method we have presented is as general as
possible, and as shown in the study case we have presented, it
can be easily applied to any hardware system, architecture
or cryptographic module. Of course, when changing one
of the aforementioned parameters, we can get values that
differ considerably from one case to another. However, the
homogeneity of the method guarantees homogeneity of data,
so allowing realistic comparisons in terms of performance.

ACKNOWLEDGMENT
This work has been partially supported by PLANET, Plat-

form for the Deployment and Operation of Heterogeneous
Networked Cooperating Objects, funded by the European
Commission under FP7 with contract number FP7-2009-5-
257649 (www.planet-ict.eu) and TENACE, Protecting Na-
tional Critical Infrastructures From Cyber Threats, funded by
the Italian Ministry of Education, University and Research, un-
der the PRIN Framework with contract number 20103P34XC
(http://www.dis.uniroma1.it/˜tenace/).

REFERENCES

[1] Chang C.C., Nagel D.J., Muftic S., “Balancing security and energy
consumption in wireless sensor networks,” in Mobile Ad-Hoc and Sensor
Networks, ser. Lecture Notes in Computer Science, H. Zhang, S. Olariu,
J. Cao, and D. Johnson, Eds. Springer Berlin Heidelberg, 2007, vol.
4864, pp. 469–480.

[2] R. Daidone, G. Dini, and M. Tiloca, “STaR: Security Transparency
and Reconfigurability for Wireless Sensor Networks programming,” in
Proceedings of the 2nd International Conference on Sensor Networks,
ser. SENSORNETS ’13, February 2013.

[3] Ganesan P., Venugopalan R., Peddabachagari P., Dean A. Mueller F.,
Sichitiu M., “Analyzing and modeling encryption overhead for sensor
network nodes,” in Proceedings of the 2nd ACM International confer-
ence on Wireless sensor networks and applications WSNA ’03. New
York, NY, USA: ACM, 2003, pp. 151–159.

[4] Guimaraes G., Souto E., Sadok D., Kelner J., “Evaluation of security
mechanisms in wireless sensor networks,” in Proceedings of the Systems
Communications, 2005, 2005, pp. 428–433.

[5] D. K. Jinwala D., Patel D., “Optimizing the block cipher and modes of
operations overhead at the link layer security framework in the wireless
sensor networks,” in Proceedings of the 4th International Conference on
Information Systems Security ICISS ’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 258–272.

[6] Law Y.W., Doumen J., Hartel P., “Survey and benchmark of block
ciphers for wireless sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 2, no. 1, pp. 65–93, Feb 2006.

[7] K. Lee, J. Kapitanova and S. Son, “The price of security in wireless
sensor networks,” Computer Networks, vol. 54, no. 17, pp. 2967–2978,
December 2010.

[8] Moteiv Corporation, “Tmote iv low power wireless sensor module,”
November 2006. [Online]. Available: http://www.snm.ethz.ch/snmwiki/
pub/uploads/Projects/tmote\ sky\ datasheet.pdf

[9] R. Daidone, G. Dini and G. Anastasi, “On Evaluating the Performance
Impact of the IEEE 802.15.4 Security Sub-layer,” Computer Communi-
cations (to appear).

[10] Texas Instruments, “Texas instruments cc2420 2.4
ghz ieee 802.15.4 / zigbee ready rf transceiver,”
http://focus.ti.com/lit/ds/symlink/cc2420.pdf, 2012. [Online]. Available:
http://focus.ti.com/lit/ds/symlink/cc2420.pdf

[11] Xiao Y., Chen H.H., Sun B., Wang R., Sethi S., “MAC security and secu-
rity overhead analysis in the IEEE 802.15.4 wireless sensor networks,”
EURASIP Journal on Wireless Communications and Networking, pp.
81–81, Apr 2006.

[12] Zhu J., Leina G., Xinfang Z., “Implementation and Time Performance
Analysis of Security Suite in LR-WPAN 802.15.4,” in Proceedings of the
4th International Conference on Wireless Communications, Networking
and Mobile Computing, 2008. WiCOM ’08, 2008, pp. 1–5.


