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Abstract. The advantage of co-simulation with respect to traditional
single-paradigm simulation lies mainly in the modeling flexibility it af-
fords in composing large models out of submodels, each expressed in the
most appropriate formalism. One aspect of this flexibility is the mod-
ularity of the co-simulation framework, which allows developers to re-
place each sub-model with a new version, possibly based on a different
formalism or a different simulator, without changing the rest of the co-
simulation. This paper reports on the replacement of a sub-model in a
co-simulation built on the INTO-CPS framework. Namely, an existing
co-simulation of a water tank, available in the INTO-CPS distribution,
has been modified by replacing the tank sub-model with a sub-model
built as a Stochastic Activity Network simulated on Möbius, a tool used
to perform statistical analyses of systems with stochastic behavior. This
work discusses aspects of this redesign, including the necessary modi-
fications to the Möbius sub-model. In this still preliminary work, the
Stochastic Activity Network features related to stochastic models have
not been used, but a simple deterministic model has proved useful in in-
dicating an approach to the integration of Stochastic Activity Networks
into a co-simulation framework.

1 Introduction

Co-simulation is gaining interest and acceptance as an approach to modeling
and simulation of cyber-physical systems (CPS) [1, 30], as it is based on the
concept of modeling each part of a large, heterogeneous system with the most
appropriate formalism, and simulating each part with a tool fit for the formalism.
This requires coordinating the execution of two or more simulators, which usually
have been designed as standalone tools, therefore the need arises of standards
for the exchange of data and control among different modeling and simulation
tools. One such standard is the Functional Mockup Interface (FMI), defining the
common interface and protocol that must be honored by the simulators involved
in a co-simulation.

The simulation of a set of heterogeneous models, called a multi-model, is co-
ordinated by a master algorithm. Implementing a master algorithm from scratch
would be costly and inefficient, but co-simulation usually relies on a framework



providing the algorithm together with a user interface to configure and control
the co-simulation. An important feature of co-simulation frameworks is mod-
ularity: Developers should be able to add simulators and also to replace any
simulator with another one, which simulates the same subsystem but with a
different modeling technique, with a minimum effort and leaving the other sim-
ulators unchanged.

This paper is focused on (i) the development of an FMU for a modeling
and simulation tool not yet used in FMI-based co-simulations, and (ii) modify-
ing a previous multi-model by replacing one of its submodels with a new one,
expressed in a completely different formalism. These two points exemplify the
flexibility and modularity of the co-simulation approach. A further, longer-term
goal is investigating the integration of statistical simulation techniques and co-
simulation.

The simulation tool considered in this paper is Möbius, an environment for
the analysis and simulation of Stochastic Activity Networks (SAN). SANs are a
wide-ranging extension to Petri nets, oriented to the evaluation of performance
and dependability. The Möbius tool has been integrated in a co-simulation built
on the INTO-CPS framework. This co-simulation is a case study available in
the INTO-CPS distribution, concerning the control of a water tank. The tank
controller activates the tank’s exhaust valve depending on the water level and is
modeled in VDM, and the tank’s dynamics are modeled in Modelica. This latter
model has been replaced by a SAN and simulated with the Möbius tool.

2 Related Work

The co-simulation of a human heart modeled in Simulink and an implantable
pacemaker modeled in PVS [21] has been presented in [5], where the PVSio-
web [20] prototyping toolkit provided the communication infrastructure. A PVS
model of a controller was also used in the simulation of a semi-autonomous
vehicle [22] whose mechanical part was modeled with 20-SIM and OpenModelica,
in the INTO-CPS framework.

The Möbius [7, 9, 10] tool can be seen as oriented to co-simulation, as it
has been designed to build complex models by integrating submodels in dif-
ferent formalisms [24–26], but it requires the submodels to be developed with
tools built-in in the Möbius framework. Another multi-formalism framework is
SIMTHESys [14].

SAN models have been used in a large number of application fields, including
biology and medicine [28, 29], integrated circuits [2, 3], and railway systems [19].

From the literature on the integration of deterministic and non-deterministic
simulation, we may cite [16, 18, 17].



3 Background

This section introduces basic information on the tools and standards referred to
in the paper, with an emphasis on Stochastic Activity Networks and the Möbius
tool.

3.1 Stochastic Activity Networks

Stochastic Activity Networks [27] are an extension of Petri Nets (PN). SANs are
directed graphs with four disjoint sets of nodes: places, input gates, output gates,
and activities. The latter are an extension of PN transitions. The allowed arcs
are from places to input gates, from input gates to activities, from activities to
output gates, and from output gates to places.

Each SAN activity may be either instantaneous or timed. Timed activities
represent actions with a duration affecting the performance of the modeled sys-
tem, e.g., message transmission time. The duration of each timed activity is
expressed via a time distribution function. An activity completes when its (pos-
sibly instantaneous) execution terminates.

Any instantaneous or timed activity may have mutually exclusive outcomes,
called cases, chosen probabilistically according to the case distribution of the
activity. Cases can be used to model probabilistic behaviors.

The state of a SAN is defined by its marking, i.e., a function that, at each step
of the net’s evolution, maps the places to non-negative integers. SANs enable the
user to specify any desired enabling condition and firing rule for each activity.
This is accomplished by associating an enabling (or input) predicate and an
input function to each input gate, and an output function to each output gate.
The enabling predicate is a Boolean function of the marking of the gate’s input
places. The input and output functions compute the next marking of the input
and output places, respectively, given their current marking. If these predicates
and functions are not specified for some activity, the standard PN rules are
assumed.

The evolution of a SAN, starting from a given marking µ, may be described as
follows: (i) The instantaneous activities enabled in µ complete in some unspeci-
fied order; (ii) if no instantaneous activities are enabled in µ, the enabled (timed)
activities become active; (iii) the completion times of each active (timed) activity
are computed stochastically, according to the respective time distributions; the
activity with the earliest completion time is selected for completion; (iv) when
an activity (timed or not) completes, one of its cases is selected according to the
case distribution, and the next marking µ

′ is computed by evaluating the input
functions of the input gates and the output functions of the gates connected to
the selected case; (v) if an activity that was active in µ is no longer enabled in
µ
′, it is removed from the set of active activities.
Graphically, places are drawn as circles, input (output) gates as left-pointing

(right-pointing) triangles, instantaneous activities as narrow vertical bars, and
timed activities as thick vertical bars. Cases are drawn as small circles on the



right side of activities. Gates with default (standard PN) enabling predicates
and firing rules are not shown.

3.2 The Möbius Tool

Möbius [9, 10] is a software tool that provides a comprehensive framework for
model-based evaluation of system dependability and performance. The main
features of the tool include support for multiple high-level modeling formalisms
beyond SANs, such as, among others, PEPA fault trees [13] and the ADVISE
security model formalism [12], and statistical characterization of system behav-
ior.

The Möbius tool introduces two extensions to the SAN formalism: extended
places and global variables. Extended places are places whose marking is a nu-
merical value other than non-negative integers, or a complex data structure.
Global variables are (possibly complex) data structures that can be accessed by
enabling predicates and input and output functions, and can be shared among
different SANs.

Enabling predicates and input and output functions of the gates are specified
as C++ code.

A study model is a set of experiments, i.e., assignments to the global variables.
Study models enable developers to run simulations for different values of system
parameters. Variable assignments can be specified manually or generated by the
tool as sequences of values according to various patterns.

The tool generates a simulation solver, an executable file that can be run
from the Möbius user interface or launched from the command line.

3.3 The FMI Standard

The FMI standard [6] defines a set of C functions to support interaction among
heterogeneous simulators coordinated by a master algorithm. The interface in-
cludes operations to initialize and configure the simulators, to exchange data
with setter and getter operations, and to orchestrate the co-simulation by issu-
ing doStep commands to the individual simulators.

A Functional Mockup Unit is a software artifact packaging all components
necessary to simulate a single model, including, if needed, a whole simulator
application. Some modeling tools can produce an FMU from their user interface,
or provide scripts to create it from the command line. Otherwise, a developer can
adapt those scripts to modeling tools that do not yet support the FMI standard.

3.4 The INTO-CPS Framework

INTO-CPS [15] is an integrated tool-chain to support model-based development
of CPSs using co-simulation according to the FMI standard. The top-level com-
ponent of the tool-chain is the INTO-CPS application, a graphical user interface
for the management of co-simulation projects. Developers create FMUs for their



models using the respective tools, place them in the INTO-CPS project direc-
tory, and define their interconnections with the user interface. Simulations are
executed under control of the Co-Simulation Orchestration Engine (COE), the
core component of the tool-chain. The user interface also provides a graphical
output to plot selected quantities.

The reader is addressed to the literature [11] for other important features of
the tool-chain, such as design space exploration [8].

4 The SAN Water Tank Co-simulation

As anticipated in Section 1, the main motivations for the present work are the
development of an FMU for a new modeling tool and the replacement of a sub-
model into an existing multi-model, as described in this section.

4.1 The INTO-CPS Water Tank Example

The INTO-CPS application comes with a set of case studies [23] including a
water tank whose level is controlled by an exit valve with two states, fully open
or fully closed. The tank is fed at a constant flow and drained (when the valve
is open) at a flow rate depending on the instantaneous water level. The valve
tank controller reads the water level, then it opens the valve when the maximum
allowed level is exceeded and closes it when the water goes below the minimum
allowed level. Two models for the tank are available, one in Modelica and one
in 20-SIM, while the controller model is in VDM-RT.

4.2 The SAN Model

The tank sub-model has been replaced with a SAN developed on the Möbius
tool. In addition to the different modeling language, a different physical model
has been chosen, adapted from the one studied in [4], and the main differences
from the INTO-CPS case study are the following: (i) the intake flow is variable;
(ii) the valve is opened and closed gradually, so that its area varies linearly with
time; and (iii) the drain flow depends on the valve area, and not on the water
level. The valve actuator, however, accepts the same control inputs as in the
original model.

More precisely, the control signal takes the values 0 (close) or 1 (open) when
the lower or upper level limits, respectively, are reached. Otherwise, it maintains
the current value, as defined in the original INTO-CPS model. The area of the
valve increases when the control signal equals 1 and decreases when the control
signal is 0, unless one of the limit positions has been reached. In this case, the
valve remains open or closed until a reversing control signal is received. The
outgoing flow is proportional to the valve area, and the tank level is the integral
of the net flow.

Figure 1 shows the SAN model, where the lighter (orange) circles are ex-
tended places, used to store quantities of interest. Let us ignore, for the moment,
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Fig. 1. SAN model of the tank.

Table 1. Gate functions

Gate Predicate Function

ig1 synch = 1
input wait for input, then

set valve control and
reset synch

timer increase time;
terminate if max time reached

valve actr set valve position;
compute outflow

feed fctn compute inflow
ig4 true
ig3 true
tank fctn compute net flow and level;

set synch

the step activity, whose purpose is to synchronize the tank and the controller
models. The input gate predicates and output gate functions are summarized in
Table 1. Note that an explicit input gate is required between an extended place
and an activity, hence the always enabled gates ig3 and ig4. The control activity
performs the following actions:

1. it increments the simulation time in gate timer ;
2. it computes the valve area and the drain flow in gate valve actr ; and
3. it enables the next activity, feed, by marking place p1.

Gate timer increments the marking of place time by a fixed amount dt. This
is a global variable set by the user in the study model.

The valve area and the drain flow are computed by the output function of
valve actr, modeling the valve actuator. This function reads a global variable
containing the last command from the controller, it increases or decreases the
valve area accordingly, and computes the flow. The computed values are stored
as the markings of the extended places valve and outflow.



The feed activity models the water source and enables activity tank. Gate
feed fctn computes the intake flow as a function of time and stores its value in
place inflow. In this simulation, a sinusoidal function has been used.

Finally, the output gate tank fctn of tank computes the net flow and the
updated level. The output function executes a simple integration step increasing
the current level by the product of the net flow and the time interval.

We may note that all computations are C++ fragments entered through the
user interface and inserted by the tool into the functions of the output gates.
However, such fragments may also call external user-defined code, for example
to implement a more accurate integration method.

4.3 The FMU

Replacing a sub-model in a co-simulation multi-model involves addressing three
main concerns: ensuring semantic coherence, complying with the multi-model
synchronization mechanism, and translating between different syntactic repre-
sentations. The third concern is not very important for the case at hand, since
the submodels only exchange control and synchronization signals, the only quan-
titative information being the water level. In fact, the multi-model is composed
only of a plant subsystem (the tank, water source, and valve) and a control sub-
system. The latter receives the water level from a sensor and returns a binary
signal.

The controller’s signal concerns the issue of semantic coherence. In the orig-
inal multi-model, its effect is to cause the valve to fully open or close, whereas
in the new model the valve opens or closes gradually. Further, there are other
differences between the physical behavior of the two models. However, the mean-
ing of the controller’s output remains the same, as in both cases it signals that
the water level is not within the allowed limits. Therefore the new multi-model
makes sense even if it simulates a system with different properties.

The synchronization mechanism is controlled by the master algorithm, which
periodically invokes a doStep operation on each FMU to trigger one execution
step. This requires the simulators to agree on a common time base and be able
to pause between each simulation step.

In the INTO-CPS multi-model, the simulation step is configurable from the
user interface, so the common time base is achieved by setting variable dt equal
to the simulation step.

Pausing the SAN simulator requires adding a simple synchronization mecha-
nism to the model. The output function of gate input (Fig. 1) reads the control
signal from standard input, stores its value in a global variable, disables activ-
ity step by zeroing the marking of place synch, and enables the control activity
to start a simulation step. The step terminates when the output function of
tank fctn prints the water level to standard output and sets the marking of
place synch to re-enable activity step for the next step.

The final task is providing an FMI-compliant interface to the SAN executable.
This is done by a software component that implements the FMI interface, and in
particular the operations fmi2Instantiate and fmi2DoStep. The former spawns



Fig. 2. Results of co-simulation.

the Möbius-generated executable and connects with it through Unix pipes on
which the executable’s standard input and output are redirected. The module is
compiled into a dynamic library that is then packed in the FMU component.

The FMU described above was installed in the INTO-CPS multi-model with-
out changing the FMU for the controller, and simulated. Figure 2 is an example
of the output for one the simulations, where the darker (blue) line is the water
level and the lighter (brown) one is the controller output. This plot is consistent
with the one shown in the INTO-CPS case study [23], except for the different
waveform of the water level, due to the different incoming flow.

5 Conclusions

The present work shows, by means of a practical example, the “plug and play”
capability of the FMI standard of the co-simulation framework adopted. A pre-
existing and independently developed multi-model has been modified by replac-
ing a substantial part with a new version, differing from the original one in
the modeling formalism, in the simulation engine, and even in its physical be-
havior. The replacement has been performed without any change to the rest of
the multi-model, and has required only the inclusion of an explicit synchroniza-
tion mechanism in the SAN model and the development of an FMI-compliant
wrapper process to interface the model.

This simple procedure has been possible in spite of the fact that the new
model is expressed in a formalism quite different from such languages as Modelica



or Bond-Graphs. Making diverse modeling paradigms available gives developers
the possibility to explore more aspects of the systems being developed. Stochastic
Activity Networks, for example, make it easy to study probabilistic behaviors,
although this capability has not been exploited in the present work. In spite of
this limitation, this experience has proved useful in finding interesting aspects
of the integration of SAN models that will continue to be investigated in further
research. In particular, the synchronization with the master algorithm needs
more study. In the present work, the straightforward solution of inserting an ad

hoc sub-network into the SAN model has been adopted, but more modular, less
invasive methods should be developed. A more fundamental issue for further
work is how to synchronize the co-simulation in presence of stochastic durations
of simulation steps. Finally, even if plugging the new model in the simulation
“by hand” was rather easy, it should be made easier by providing generic tools
that can produce FMUs for new simulator from a purely declarative description
of the required interface.
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