A Model for the Storage Resource Manager

Andrea Domenici! and Flavia Donno?
! DIIEIT, University of Pisa, v. Diotisalvi 2, I-56122 Pisa, Italy
2 CERN, European Organization for Nuclear Research, CH-1211 Geneva 23,
Switzerland

Abstract. The Storage Resource Manager has been proposed as a stan-
dard interface for high-end storage systems deployed on Grid architec-
tures. In this paper we propose a conceptual model for the SRM that
should supplement its API specification with a clear and concise defi-
nition of its underlying structural and behavioral concepts. This model
would make it easier to define its semantics, it would help service and
application developers, and provide for a more rigorous validation of
implementations. Different notations are used as appropriate to define
different aspects of the model.

1 Introduction

The Worldwide LHC Computing Grid (WLCG) is the infrastructure that will
provide the computational and storage facilities needed to process the data col-
lected by the four experiments at the Large Hadron Collider (LHC) at CERN,
amounting to several Petabytes each year.

One of the critical issues that WLCG has to face is the provision of a Grid
storage service that allows for dynamic space allocation, the negotiation of file
access protocols, support for quality of storage, authentication and authorization
mechanisms, storage and file management, scheduling of space and file opera-
tions, support for temporary files, and other storage management functions.

The Storage Resource Manager (SRM) has been proposed [1] as a standard
interface for high-end storage systems deployed on Grid infrastructures. In par-
ticular, a significant effort by an international collaboration coordinated by the
WLCG has led to the definition of the SRM 2.2 protocol and to its implemen-
tation on all the storage solutions deployed in WLCG.

The SRM is specified primarily as an application programming interface
(API). In this paper we propose a conceptual model for the SRM that should
supplement the API and other specifications with an explicit, clear and concise
definition of its underlying structural and behavioral concepts. This model would
make it easier to define the service semantics, it would help service and applica-
tion developers and provide for a more rigorous validation of implementations.

The proposed model is meant to strike a satisfactory compromise between
clarity and formality. Different notations (e.g., basic set-theoretic and logical
formalism, UML [2] diagrams, and plain English) are used as appropriate to
define different aspects of the model.



2 The Storage Resource Manager

A Storage Element (SE) is a Grid Service implemented on a mass storage system
(MSS) that may be based on a pool of disk servers, on more specialized high-
performing disk-based hardware, or on a disk cache front-end backed by a tape
system, or some other reliable, long-term storage medium. Remote data access is
provided by a GridFTP service [3] and possibly by other data transfer services,
while local access is provided by POSIX-like input/output calls.

A SE provides spaces where users create and access files. A file is a logical
set of data that is embodied in one or more physical copies.

Storage spaces may be of different qualities, related to reliability and acces-
sibility, and support different data transfer protocols. Different users may have
different requirements on space quality and access protocol, therefore, besides
the data transfer and file access functions, a SE must support more advanced
resource management services, including dynamic space allocation.

The Storage Resource Manager (SRM) is a middleware component that pro-
vides the resource management services through a standard interface, indepen-
dent of the underlying MSS. The interface is defined by the SRM Interface
Specification (IS) [4] that lists the service requests that a client application may
issue, along with the data types for their arguments and results.

Request signatures are grouped by functionality, such as space management
requests that allow clients to reserve, release, and manage spaces, specifying or
negotiating their quality and lifetime, and data transfer requests that get files
into SRM spaces either from a client’s space or from other storage systems, and
retrieve them. Other groups are directory, permission, and discovery functions.

3 A Model for the Storage Resource Manager

The main SRM specification are the above mentioned IS and the Storage Flement
Model for SRM 2.2 and GLUE schema description [5]. Other relevant documents
are [1,6,7]. We proposed a model to extend the specifications with a synthetic
description of the basic entities, their relationships, and their behaviors.

We have chosen to use two submodels, with different levels of formality. The
semi-formal model uses plain English and UML diagrams, and it is meant to give
an overall view of the system, identifying its main components, their relationships
and behavior, and to define and clarify the terms used in the IS. A more formal
model uses set-theoretic and logical notations to express constraints. This model
is meant to resolve ambiguities that might remain in the semi-formal model, and
to support the design and testing of SRM implementations.

3.1 Describing Concepts and Properties

In the static model, the SRM concepts are represented as object classes, their
properties and reciprocal relationshisps being modeled by attributes and associa-
tions subject to various constraints. Figure 1 shows a partial UML class diagram
for the SRM static model.



Space

spaceToken: string

spaceRetentionPolicy: TRetentionPolicy 1 Handle
spaceAccessLatency: TAccessLatency
ifetime: i space
spaceLifetime: int P turl: anyURI
totalReservedSpace: long int handlePinLifetime: int
guaranteedReservedSpace: long int
0.*
space | 1
0.* 0.* copy | 1
File Copy
file 1.*

surl: anyURI S requestToken: RequestToken
fileRetentionPolicy: TRetentionPolicy copies | copyRetentionPolicy: TRetentionPolicy
fileAccessLatency: TAccessLatency file 1 copyAccessLatency: TAccessLatency
fileStorageType: TFileStorageType > copyStorageType: TFileStorageType
locality: TFileStorageType master {subsets copies} | COPyPinLifetime: int
fileLifetimeAssigned: int
fileLifetimeLeft: int

Fig. 1. Static model of the SRM.

Some of the attributes represent important properties: retention policy, access
latency, and (file) storage type. Retention policy describes the likelihood that a
file copy may be lost in a given storage space. This likelihood may be high
(REPLICA retention policy), intermediate (OUTPUT), or low (CUSTODIAL).
The OUTPUT policy is currently not implemented. Access latency describes
data accessibility: A space where data are immediately accessible is ONLINE,
otherwise it is NEARLINE. A NEARLINE space is supported by mechanical
media, such as tape, that require data to be staged to temporary disk storage for
access. A third latency, OFFLINE, is currently not implemented. The storage
type refers to file lifetime. A VOLATILE file is deleted automatically after a
given time. A DURABLE file also has a limited lifetime, but it must be removed
explicitly by its owner. A PERMANENT file has an unlimited lifetime, until
removed by its owner. Durable files are currently not implemented. A Site URL
(SURL) identifies the file within the SE, and the SE itself.

The associations in the diagram show that a space hosts zero or more files,
that each file has one or more copies, one of which is the master copy, that each
copy resides on a space, and it has one or more handles.

3.2 Describing Behavior

The dynamic model of the SRM is described by UML state diagrams. Figure 2
shows a part of the model, related to files.

A file is created with a prepareToPut or a copy request. A request can be
served asynchronously, so a file may remain for some time in a waiting state
(SURL_Unassigned) before it is assigned a SURL. In this state, the file can be
destroyed by an abortFiles or abortRequest operation. Otherwise, eventually a
SURL is assigned and the file enters a state (SURL_Assigned) where it can be



destroyed by an rm (remove) request, by a releaseSpace request with the force
option, when its lifetime expires and the file is volatile, or when the pin lifetime
of its last copy expires and the file is volatile.

Some requests are accepted in the SURL_Assigned state, but they do not
alter the behavior. Such requests are listed as internal transitions (shown inside
the state icon in the diagram) and leave the file in SURL_Assigned and in its
current substate, whichever it be.

SURL_Unassigned / SURL_Assigned \

extendFileLifetime
extendFileLifetimelnSpace
setPermissions
prepareToPut [busy]

copy [busy]

abortRequest abortFiles m

releaseSpace [force]

when (fileLifetimeLeft = 0) [type = VOLATILE]

when (expiredCopy(c) and lastCopy(c)) [type = VOLATILE]

Fig. 2. State machine for File (1).

4 A More Formal Static Model

While the semi-formal model exposed above is helpful for users and developers
of the SRM, a finer level of detail and a greater degree of formality are needed to
ensure interoperability and full compliance with the specification. Therefore we
propose an initial, still incomplete, formal model expressed in basic mathematical
notation. Since the SRM is still evolving and several issues are still open, the
model is limited to fundamental features, upon which further extensions and
refinements can be built.

An elementary mathematical notation was chosen instead of some more spe-
cialized language, such as the UML Object Constraint Language [8] or the Z Spec-
ification Language [9], but it should be easy to translate the notation adopted
here to those formalisms, if needed.

First, we introduce some basic sets whose members are unstructured values,
such as atomic symbols (meant to represent names of objects or discrete values
for their attributes) or numbers. Then we define the constructed sets of stor-
age elements, spaces, copies, handles, and files as Cartesian products of some
previouly defined sets.

Functions are used to represent various properties and relationships. Con-
straints on properties and relationships are expressed as predicate logic formulas.



For example, two of the basic sets are the set of space or file sizes, defined as
identical to the set of natural numbers (Sz = IN), and the set of retention policies,
defined as a set of three values (Rp = {REPLICA, OUTPUT, CUSTODIAL}).

The set of spaces is defined as S =T x L x Prop x Sz X R, where T is the
set of space tokens (i.e., identifiers), L the set of lifetimes, Prop a set of tuples
of space properties, and Ry is the set of request issued for each space.

As an example of a constraint, the statement that “a file cannot outlive its
space” is expressed as

Viertsstime(s) 0 < left(f,t) < lleft(mspace(f),t)

where F' is the set of files, ¢ is a time value, stime(f) is the time of file creation,
lleft(-, t) is the file or space lifetime remaining at time ¢, and mspace(f) is the
space holding the master copy of file f.

5 Validation of Existing SRM Implementations

The SRM has been implemented for five different MSSs, namely CASTOR [10],
developed at CERN and based on tape libraries and disk servers, dCache [7], de-
veloped at DESY, used with multiple MSS backends, DPM [11], a disk-only MSS
developed at CERN, DRM/BeStMan, a disk-based system developed at LBNL,
the first promoter of SRM, and StoRM [12], a disk-based system developed at
CNAF, based on parallel file systems such as GPFS or PVFS.

All these systems are being tested for compliance with the SRM IS. Us-
ing various techniques of black-box testing [13], five families of test cases have
been designed: Awvailability to check the availability of the SRM end-points; Ba-
sic to verify basic functionality of the implemented SRM APIs; Use Cases to
check boundary conditions, function interactions, and exceptions; Ezhaustion
to exhaust all possible values of input and output arguments such as length of
filenames, SURL format, and optional arguments; Stress tests to stress the sys-
tems, identify race conditions, study the behavior of the system when critical
concurrent operations are performed, and in other exacting conditions.

The SRM model proposed in this paper has been used to derive several test
cases in the Basic and Use Cases test suites.

6 Conclusions

A comprehensive model of the SRM is being developed to support the devel-
opment and verification of SRM implementations, using different notations and
levels of formality in order to satisfy the needs of different stakeholders in the
SRM development.

The first draft of the model is available, and feedback from its users is awaited.
In fact, the model has already contributed to the validation of existing implemen-
tations by assisting in the design of a few families of tests, and its development,
has helped in identifying unanticipated behaviors and interactions. The testing
campaign itself has helped the developers to find solutions that better satisfy
the needs of the users.



7

Acknowledgements

The work of the many people in the SRM collaboration is gratefully acknowl-
edged. In particular we would like to thank Arie Shoshani, Alex Sim and Junmin
Gu from LBNL, Jean-Philippe Baud, Paolo Badino, Maarten Litmaath from
CERN, Timur Perelmutov from FNAL, Patrick Fuhrmann from DESY, Shaun
De Witt from RAL, Ezio Corso from ICTP, Luca Magnoni and Riccardo Zappi
from CNAF/INFN, for their valuable input in the specification definition pro-
cess. Finally, we would like to thank the WLCG project for giving us the op-
portunity to collect the requirements and test the proposed protocol for real
use-cases. The authors have been supported by CERN and INFN, respectively.

References

10.

11.

12.

13.

. Shoshani, A., Sim, A., Gu, J.: Storage Resource Managers: Middleware Compo-

nents for Grid Storage. In: Proceedings of the 9th IEEE Symposium on Mass
Storage Systems (MSS ’02). (2002)

. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference

Manual. 2nd edn. Addison-Wesley (2004)
Allcock, W., et al.: GridFTP protocol specification. Document, GGF GridFTP
Working Group (September 2002)

The Storage Resource Manager Interface Specification, Version 2.2.
http://sdm.1bl.gov/srm-wg/doc/SRM.v2.2.pdf (December 2006) Storage Re-
source Manager Working Group.

Badino, P., et al.: Storage Element Model for SRM 2.2 and GLUE schema descrip-
tion, v3.5. Technical report, WLCG (Oct. 27, 2006)

Shoshani, A., et al.: Storage Resource Management: Concepts, Functionality, and
Interface Specification. In: Future of Grid Data Environments: A Global Grid
Forum (GGF) Data Area Workshop, Berlin, Germany (March 9-13, 2004)

Ernst, M., et al.: Managed data storage and data access services for data grids.
In: Proceedings of the Computing in High Energy Physics (CHEP) conference,
Interlaken, Switzerland (September 27 — October 1, 2004)

Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. 2nd edn. Addison-Wesley (2004)

Woodcock, J., Davies, J.: Using Z — Specification, Refinement, and Proof. Prentice
Hall (1996)

Barring, O., et al.: Storage Resource Sharing with CASTOR. In: 12th NASA
Goddard/21st IEEE Conference on Mass Storage Systems and Technologies
(MSST2004), U. of Maryland, Adelphi, MD (Apr. 13-16, 2004)

Baud, J.P., Casey, J.: Evolution of LCG-2 Data Management. In: Proceedings of
the Computing in High Energy Physics (CHEP’04) conference, Interlaken, Switzer-
land (September 27 — October 1, 2004)

Corso, E., et al.: StoRM, an SRM Implementation for LHC Analysis Farms. In:
Proceedings of the Computing in High Energy Physics (CHEP’06) conference,
Mumbai, India (Feb. 2006)

Myers, G.J., (rev. by), C.S., (rev. by), T.B., (rev. by), T.M.T.: The Art of Software
Testing. 2nd edn. John Wiley & Sons (2004)



