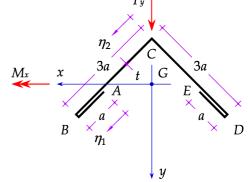
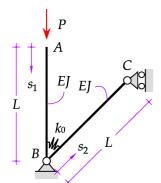
Università di Pisa


Esame di SCIENZA DELLE COSTRUZIONI II Corso di Laurea in Ingegneria Civile, Ambientale e Edile

(Docente: Prof. Stefano Bennati)


Prova scritta del 18 febbraio 2017

Problema 1. La sezione trasversale di spessore $t \ll a$, mostrata in figura, è soggetta ad una forza di taglio $T_y = P$ agente lungo l'asse verticale di simmetria y e ad un momento flettente $M_x = 10 \ Pa$.

- 1) Determinare la posizione del baricentro G della sezione e M_x calcolare il valore dei momenti d'inerzia J_x e J_y .
- 2) Utilizzando la formula di Jourawski, determinare le espressioni delle tensioni tangenziali dovute a T_y nei tratti AB e BC della linea media in funzione, rispettivamente, delle ascisse curvilinee η_1 ed η_2 . Sfruttando la simmetria, disegnare il grafico che ne mostra l'andamento sull'intera linea media, utilizzando quest'ultima come fondamentale ed indicando il verso delle tensioni su ciascun tratto.

- 3) Scrivere l'espressione delle tensioni normali dovute a M_x in funzione della coordinata y.
- 4) Calcolare il valore della tensione ideale secondo von Mises nel punto *B*.

Problema 2. Nel problema di instabilità di figura, le travi AB e BC sono flessibili ma inestensibili. In B è presente una molla rotazionale di rigidezza k_0 .

- 1) Scrivere le equazioni differenziali e le condizioni al bordo che consentirebbero di determinare il valore del carico critico.
- 2) Assumendo che la rigidezza della molla k_0 sia infinita, scrivere l'equazione trascendente che, risolta, fornirebbe il valore del carico critico.

N.B. Per le modalità di esame (validità della prova, etc.) consultare la pagina web del docente.

Avvertenze: scrivere su ogni foglio protocollo il proprio nome, cognome e numero di matricola e <u>corso di laurea</u>; alla fine della prova, consegnare tutti i fogli utilizzati.

Studente	(matricola:
Studente	Ullatricola.