
Università di Pisa

Esame di SCIENZA DELLE COSTRUZIONI II Corso di Laurea in Ingegneria Civile, Ambientale e Edile (Docente: Prof. Stefano Bennati)

Prova scritta del 3 febbraio 2018

sez. trasv. AB

Problema 1. La trave AB mostrata in figura, incastrata alle sue estremità, di peso trascurabile e soggetta a un cedimento anelastico in corrispondenza dell'estremo B. La sezione di incastro B subisce il cedimento verticale verso il basso d'intensità δ e la rotazione intorno all'asse z di ampiezza ψ indicati in figura. La trave, che è costituita da un materiale elastico lineare di Lamé la cui tensione limite è uguale a un valore noto σ_0 , ha una sezione trasversale tubolare di forma circolare e di spessore, t, piccolo rispetto al raggio R.

- E' facile mostrare che, nelle ipotesi usuali della teoria tecnica delle travi elastiche, l'intensità delle coppie di incastro in A e B, mostrate in figura e il cui asse momento è diretto lungo l'asse x, è pari a $M = 6EJ\delta/l^2$. E' anche facile calcolare, come funzione della rigidezza torsionale GJ_t , il valore della coppia torcente M_t dovuta alla rotazione ψ . Calcolare, in corrispondenza di tali valori, le espressioni del taglio T_y agente lungo l'asse y, del momento flettente M_x e del momento torcente M_z e tracciarne i relativi diagrammi quotati, dimostrando che le sezioni di incastro A e B sono le più sollecitate (giustificare la risposta).
- Determinare le proprietà geometriche significative della sezione trasversale della trave AB (area e momento d'inerzia rispetto all'asse x). Con riferimento alla sezione trasversale di incastro A determinare, come funzioni dell'angolo θ indicato in figura, le espressioni analitiche delle tensioni normali dovute al momento flettente e di quelle tangenziali dovute al taglio e al momento torcente lungo la semicirconferenza CDE: tracciare, inoltre, i corrispondenti diagrammi quotati.
- Nel caso in cui l/R=10 e t/R=1/10, scrivere le equazioni che consentono di calcolare le coppie di valori (δ, ψ) in corrispondenza delle quali la tensione ideale secondo von Mises raggiunge il valore limite in almeno uno dei punti C e D della sezione trasversale maggiormente sollecitata.
- Disegnare nel piano (δ, ψ) il dominio dei valori ammissibili dei cedimenti (assumere $E/\sigma_0 = 1000$ e l/R = 6). (facoltativo)

Avvertenze: scrivere su og	gni foglio protocollo	il proprio nome,	cognome	e numero d	di matricola	e <u>corso</u> e	di
<u>laurea;</u> alla fine della pr	ova, consegnare tutt	i i fogli utilizzat	i.				

(matricola:

Studente