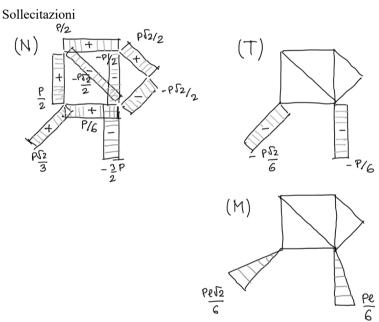
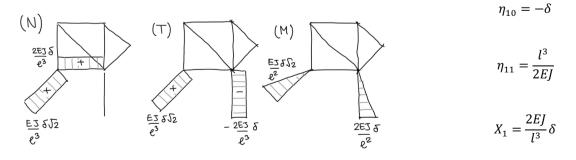

Corso di Laurea in Ingegneria Civile Ambientale Edile – Università di Pisa, a.a. 2020-21 SCIENZA DELLE COSTRUZIONI


(Docenti: Prof. Ing. Riccardo Barsotti; Prof. Ing. Stefano Bennati)

Prova Scritta del 26 novembre 2022 – sintesi della soluzione


Problema 1 [16/30].

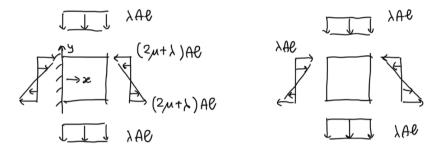
1) Scelto come incognita iperstatica X_1 lo sforzo normale nell'asta BF, si ottiene:

2) Mantenendo la stessa incognita iperstatica X_1 del punto precedente, si ottiene:

Il punto E si sposta verso l'alto e verso destra; entrambe le componenti sono pari a $\delta/6$.

Corso di Laurea in Ingegneria Civile Ambientale Edile – Università di Pisa, a.a. 2020-21 SCIENZA DELLE COSTRUZIONI

(Docenti: Prof. Ing. Riccardo Barsotti; Prof. Ing. Stefano Bennati)


Problema 2 [16/30].

1) Il campo di spostamento è cinematicamente ammissibile.

Tensioni: $\sigma_x = -2A(2\mu + \lambda)y$, $\sigma_y = \sigma_z = -2A\lambda y$, $\tau_{xy} = \tau_{yz} = \tau_{zx} = 0$.

2) Forze di volume (costanti): $b_x = 0$, $b_y = 2A\lambda$, $b_z = 0$.

Forze di superficie:

Risultante delle reazioni sulla faccia incastrata = 0; momento risultante rispetto a O, $M_0 = (2\mu + \lambda)Al^3/6$.

- 3) Variazione di lunghezza del segmento BD: $\Delta l = \int_{-l/2}^{l/2} Ay \sqrt{2} dy = 0$.
- 4) La massima tensione ideale secondo von Mises si realizza nei punti di ordinata $y = \pm l/2$; il campo di sforzo non risulta ammissibile per il materiale.