

Abstract – Integrated services networks face the challenge of
managing several traffic classes at the same time. Service
disciplines devised for integrated services networks therefore
need to be flexible, i.e. able to provide different types of service,
in order to accommodate different traffic classes efficiently. In
this paper we focus on the integration of rate-guaranteed and
best-effort traffic, and we argue that service disciplines based on
the Generalized Processor Sharing paradigm, which schedule
flows according to their weights, lack the flexibility needed to
efficiently manage both classes at the same time. We propose
that a different service paradigm, the Dual-Class paradigm,
which considers the two traffic classes at the same time, be used
as a reference to devise flexible and efficient service disciplines
for integrated services networks. We then present an innovative
Packet Timed Token Service Discipline, which approximates a
Dual-Class paradigm. This is shown by means of a fluid-flow
analysis on PTTSD.

Index terms – Packet scheduling, Quality of Service,

Integrated Services, Timed Token Protocol.

I. INTRODUCTION
The evolution of packet-based network technologies

over the last decade, as well as the wide spreading of an
instance of these technologies, i.e. the Internet, as a
global and commercial communication infrastructure,
are challenging the traditional network service models,
such as the original TCP/IP’s best effort model. As a
result, new, alternative service models and traffic
management schemes are needed in order to improve
Quality of Service (QoS) provision. ATM-based
network architectures naturally embody a QoS concept.
This is done by specifying (six) standard service
categories in terms of a set of parameters characterizing
both the traffic presented to the network, and the QoS
required from the network [11]. As regards the Internet,
two main QoS architectures are considered by the IETF:
IntServ, which provides end-to-end QoS on a per-flow
basis, and DiffServ, which supports QoS for traffic
aggregates [14], [15].

A great challenge for QoS-enabling architectures
results from the integration of services. When traffic
flows pertaining to multiple traffic classes, each bearing
different QoS requirements, coexist in a network,
resource management needs to be flexible enough to
efficiently provide each flow with a different type of

service according to its class, at a feasible
computational complexity.

A key component of QoS-enabling architectures are
the packet service disciplines (or scheduling
algorithms) implemented at each switch, selecting
which next packet to transmit on an output link, and
when, on the basis of several expected performance
results. This research area has been extensively
investigated in recent years, as testified by the
abundance of available literature [13]. It has been
observed that a strict priority service discipline is not
suitable for an integrated services network, since –
although it provides different services for the different
priority classes – it offers no means of controlling the
service of each priority class [19]. Over the last decade,
the ideal fluid-flow service discipline known as
Generalized Processor Sharing [9], and its many packet-
based derivatives, have received much attention. These
service disciplines allocate bandwidth to flows in
proportion to their weights. A GPS paradigm is well
suited for servicing best-effort traffic, since it
distributes bandwidth fairly among flows. On the other
hand, when weights are selected proportionally to the
rate requirements and admission control is enforced,
GPS has also been proved to be suitable for servicing
rate-guaranteed traffic [9].

Rate-guaranteed traffic and best-effort traffic have
very different QoS requirements: rate-guaranteed traffic
requires a minimum rate, regardless of the network
conditions, whilst best-effort traffic needs no such
guarantee. From an economic perspective, rate-
guaranteed traffic flows are supposed to be billed
according to their minimum guaranteed rate, whilst
best-effort traffic can be charged in proportion to the
amount of service it receives. Therefore, servicing as
much best-effort traffic as possible, while still
maintaining the negotiated guarantees for rate-
guaranteed traffic could also maximize the profits of
service providers.

GPS-based service disciplines lack the flexibility to
efficiently account for both rate-guaranteed and best-
effort traffic at the same time. For instance, when flows

Fluid-Flow Analysis of the Packet Timed Token Service Discipline

L. Lenzini, E. Mingozzi, G. Stea

Dipartimento di Ingegneria della Informazione - University of Pisa
Via Diotisalvi 2, 56126 Pisa - Italy

{l.lenzini, e.mingozzi, g.stea}@iet.unipi.it

Technical Report, December 2001

 2

of both traffic classes are scheduled, they are all
guaranteed a minimum rate; this is clearly not necessary
for best-effort flows; on the other hand rate-guaranteed
flows can be serviced at more than the minimum
guaranteed rate when the switch is lightly loaded, whilst
sharing the whole excess bandwidth only among the
best-effort traffic would be desirable. These problems
are due to the fact that the GPS paradigm only considers
one type of flows.

In order to achieve a better efficiency in the link
capacity utilization, we suggest that a service discipline
should approximate an alternative service paradigm, the
Dual-Class paradigm, which explicitly considers the
two traffic classes at the same time. In the DC
paradigm, rate-guaranteed flows are entitled a fixed rate,
equal to the requested rate, regardless of the network
conditions, and best-effort flows share all the residual
bandwidth (i.e. the bandwidth which has not been
reserved for rate-guaranteed flows, plus the bandwidth
instantly unused by idle rate-guaranteed flows)
according to a GPS paradigm. The DC paradigm
maximizes the service provided for best-effort traffic
while still meeting the guarantees for rate-guaranteed
traffic. Thus, a service discipline based on the DC
paradigm seems particularly suitable for an integrated
services network.

We then introduce the Packet Timed Token Service
Discipline, an innovative packet scheduling discipline
which approximates the Dual-Class paradigm at a
feasible computational complexity. PTTSD manages
two distinct types of traffic flows, synchronous (i.e.
rate-guaranteed) and asynchronous (i.e. best-effort),
enforcing minimum rate guarantees on the first and
servicing the second in a proportional way. More
specifically, when synchronous flows are active, they
are entitled to use a given amount of bandwidth, while
asynchronous flows share most of the residual capacity
proportionally. In order to determine the amount of
traffic to serve from each synchronous and
asynchronous flow, PTTSD applies at the output link of
a switch rules based on those used to control medium
access by the Timed Token Protocol [1], currently
implemented in many ring-based data networks (e.g.
FDDI). In this paper, we discuss how PTTSD
approximates the Dual-Class paradigm; this is done by
means of a fluid-flow analysis of PTTSD.

The rest of the paper is organized as follows. Section
II introduces the Dual-Class paradigm and discusses
possible ways to approximate it, while Section III
describes the PTTSD. In Section IV we derive the fluid-
flow model of PTTSD, whilst in Section V we show

how PTTSD approximates the Dual-Class Paradigm.
Finally, Section VI draws some conclusions.

II. DUAL-CLASS PARADIGM
In this section we formally define the Dual-Class

paradigm, and we then discuss possible ways to obtain a
service discipline that approximates the DC paradigm.

Let us focus on the output link of a switch, whose
capacity is C bits/s. We assume that input traffic is
organized into flows, which are grouped into two sets:
the first set includes R rate-guaranteed flows, each one
requiring a minimum rate 1 2, ,..., Rr r r such that

1
R

ii
r C

=
≤∑ ; the other set includes B best-effort flows,

each one competing for the available bandwidth with a
weight 1 2, ,..., Bw w w , according to a GPS paradigm.
Figure 1 shows the two flow sets.

...

link

rate-guaranteed best-effort

r1 r2
rR w1 w2 wB...

Figure 1 – Flow sets in the DC paradigm

Let us denote with ()RB t and ()BB t the set of
backlogged rate-guaranteed and best-effort flows
respectively at time t , and let us denote with ()iR t the
instantaneous service rate of a backlogged flow at time
t .

Definition 1:
We define the (non-work conserving) Dual-Class

paradigm as the one for which, at any time instant t :

()
()

()

() ()
R

B

i R

ii j B
j j B t

j B t

r i B t

wR t C r i B t
w ∈

∈

∈⎧
⎪

⎛ ⎞⎪= ⎨ ⎜ ⎟− ∈
⎪ ⎜ ⎟

⎝ ⎠⎪⎩

∑∑
 (1)

It is clear that Definition 1 defines a non-work
conserving paradigm; in fact, only a non-work
conserving paradigm can upper bound the rate of rate-
guaranteed flows when no best-effort flow is
backlogged.

We can restrict rate-guaranteed flows to be serviced
at a fixed rate only when at least one best-effort flow is

 3

backlogged, and define a work-conserving version of
the DC paradigm.

Definition 2:

We define the (work-conserving) Dual-Class
paradigm as the one for which, at any time instant t :

()

()
()

(), ()

() (), ()

()

R

R
B

i
R B

j
j B t

i i R B

i
j B

j j B t
j B t

r C i B t B t
r

R t r i B t B t

w C r i B t
w

∈

∈
∈

⎧
⎪ ⋅ ∈ =∅
⎪
⎪
⎪⎪= ∈ ≠∅⎨
⎪ ⎛ ⎞⎪ ⎜ ⎟− ∈⎪ ⎜ ⎟⎪ ⎝ ⎠
⎪⎩

∑

∑∑

 (2)

In the work-conserving version of the DC paradigm,
to which we will refer hereafter, rate-guaranteed flows
fairly share the link capacity on the basis of their
required rates when no best-effort flow is backlogged.

It is clear that (2) can only hold in an ideal fluid-flow

service discipline, in which multiple flows can be
serviced at the same time. Therefore it seems natural to
ask if either GPS or Hierarchical GPS [17], both of
which are fluid-flow service disciplines, exhibit the
same behavior. We show that this is not the case by
means of a simple example.

Example
Suppose that two rate-guaranteed flows i and j and

best-effort flow k are scheduled under GPS, according
to any choice of weights which enables flows i and j
to be served exactly at the required rate when all flows
are backlogged. When flow i is not backlogged, part of
its bandwidth will go to flow j even if k is
backlogged, which is in contrast to (2). Suppose now
that the same flow set is scheduled under a two-level H-
GPS and that weights are selected as to provide exactly
the required rate to i and j when all flows are
backlogged. From Figure 2, which reports the only two
possible cases, it is clear that when flow i is not
backlogged, at least part of its bandwidth still goes to
flow j even if k is backlogged, which is in contrast to
(2).

The concern of managing different traffic classes is
also a key issue of link-sharing [16]. Far from being an
alternative to link-sharing, a DC-based service
discipline can instead be integrated into a link-sharing
framework to improve efficiency where sharing
between different traffic classes is required.

link

flow k

flow i flow j

link

flow i

flow j flow k

Figure 2 – Excess bandwidth redistribution in H-GPS

It has been also observed that the integration of
different traffic classes could be accomplished by
employing different schedulers (e.g. one for each traffic
class) on a time-sharing or priority basis [13], [16]. This
approach is sometimes called multi-level scheduling,
since it employs a top-level scheduler to decide which
bottom-level scheduler is active when. While multi-
level scheduling would certainly increase the cost of a
switch, to the best of our knowledge no general rules
exist concerning what service disciplines to use at each
level, and no general method of analysis is known.

Two scheduling discipline which explicitly take into
account two traffic classes, namely latency-critical (i.e.
real-time) traffic and best-effort traffic have been
proposed as extensions of Deficit Round-Robin. The
first one, called DRR+ ([20]), was shown in [21] to be
unfit to schedule latency-critical traffic in multi-hop
networks, since it demotes it to best-effort as soon as
any burstiness is accumulated. The second one, called
DRR++, and presented in [21], also accounts for bursty
latency-critical flows. To the best of our knowledge, no
formal analysis of DRR++ has been carried out in order
to explore what real-time guarantees can be enforced
under what conditions.

A unified framework which schedules two sets of
tasks on a processor according to (2) was first proposed
in [12], though in a different context from that of
network scheduling. It has been proposed therein that
the DC paradigm be approximated by coupling a
dynamic weight management policy with the GPS-
based service discipline EEVDF. In this context, flows
still receive service on a weight basis, but weights are
dynamically varied according to the backlog state of the
flows in order to approximate (2). The weight

 4

management policy requires the whole set of weights to
be recomputed at a packet timescale. Moreover, since a
virtual time function is used to sort packets, weight
recomputation should also imply packet resorting.
Similar arguments can be used to show that the same
problem also arises when other GPS-based service
disciplines are employed, both in a flat or in a
hierarchical framework. Therefore, DC paradigm
approximation through a GPS-based service discipline
does not seem to be a computationally feasible solution.

Though devised for the very different context of
medium access control in a token ring network, the
Timed Token Protocol presents some features that make
it a good starting point for developing a packet service
discipline which approximates the DC paradigm.
Specifically, TTP considers two traffic classes, namely
synchronous and asynchronous. On each token visit to a
node, synchronous traffic can be transmitted for a
bounded time, while asynchronous traffic transmission
time adapts to the token pace in order to keep the inter-
token time constant1. It has been proven in [2]-[6] that
synchronous service can be used for transmitting real-
time traffic, and several simulative studies [8] show that
the TTP offers to each node an identical opportunity to
transmit asynchronous traffic. Moreover, asynchronous
traffic effectively takes advantage of the bandwidth not
used by synchronous traffic. A packet service discipline
which services flows according to either the
synchronous or asynchronous TTP service can be
obtained at the same computational complexity of a
simple round-robin scheduler.

III. PACKET TIMED TOKEN SERVICE DISCIPLINE
In this Section we present the Packet Timed Token

Service Discipline, and we analyze its properties.
PTTSD is a work-conserving frame-based service

discipline, which manages two types of flows2:
synchronous flows, for which a bounded transmission
period (synchronous bandwidth3) is reserved in each
frame, and asynchronous flows, which transmit their
traffic depending on the frame duration.

We will describe and analyze PTTSD under the
assumption that it manages a set of SN synchronous
flows, each of which is assigned a synchronous

1 The algorithm performed by each node in a TTP ring is reported

in more detail in Appendix A.
2 The mechanisms by which incoming traffic is classified into

flows are beyond the scope of this paper.
3 It must be noted that, according to the TTP terminology, which

will be broadly reused for PTTSD, the word bandwidth denotes a
time interval.

bandwidth hH , 1... Sh N= , and a set of AN
asynchronous flows. We will denote with S and A the
two sets. We will assume that each flow enqueues its
packets to a separate queue. Packets from synchronous
flow i have a maximum transmission time of iτ
seconds; we denote ()max

1..
max

S
i

i N
τ τ

=
= .

In PTTSD, a reference frame duration TTRT (Target
Token Revolution Time) must be selected. This time is
used by the asynchronous flows to bound their
transmissions.

a. Algorithm Definition
In PTTSD, synchronous and asynchronous flows are

considered for transmission in a fixed order on a round-
robin basis. Within a single round (or revolution),
synchronous flows are considered first, followed by the
asynchronous flows.

Ideally, a backlogged synchronous flow i should be
serviced for a time iH on each revolution. The presence
of variable length packets – which require atomic
transmission – clearly makes it impossible to exactly fill
the synchronous bandwidth on each revolution. In order
to minimize the impact of packet lengths on the
synchronous transmission times PTTSD uses a service
lag variable and a two-cycle mechanism similar to those
used by Carry Over Round Robin [10]. The latter is a
service discipline for rate-guaranteed ATM
connections, which considers fixed length cells.
However, our PTTSD analysis also shows that the same
mechanism can also handle variable length packets.
Each synchronous flow is associated with a variable i∆
(service lag), which measures the difference between
the service time that a backlogged synchronous flow
required and the service time it actually received. Each

i∆ is managed as follows:
• reset to zero when synchronous flow i is idle;
• incremented by iH on each revolution if flow i is

backlogged;
• decremented by the service time flow i receives

when it is being serviced.
Within a single revolution, PTTSD makes two

consecutive sub-cycles servicing the synchronous flows
before servicing the asynchronous ones. In the first sub-
cycle, called the major cycle, each synchronous flow i
is serviced for a time interval less than or equal to i∆
(i.e. a packet transmission is not allowed to start unless
it is completed within that interval). In the subsequent
sub-cycle, called the minor cycle, only synchronous

 5

flows with 0i∆ > are eligible for transmission, and
only one packet per flow may be transmitted. PTTSD
stops transmitting synchronous flows packets when all
the eligible flows have been served in the minor cycle,
or when a time equal to or greater than hh S

H
∈∑ has

elapsed since the beginning of the revolution,
whichever occurs first. Note that synchronous flows can
be serviced until at most maxhh S

H τ
∈

+∑ units of time

have elapsed since the major cycle has started. The
following constraint (protocol constraint) is therefore
required in order to guarantee that all synchronous
flows can be properly serviced within a TTRT time
interval:

maxhh S
H TTRTτ

∈
+ ≤∑ (3)

After the minor cycle ends, PTTSD considers the
asynchronous flows before starting a new revolution.
Each asynchronous flow is associated with a variable

jL (lateness), which records the delay accumulated in
the previous revolutions. A backlogged asynchronous
flow j calculates the available transmission time
(asynchronous bandwidth) when it is visited, according
to the following algorithm: it computes the elapsed time
t of the previous revolution duration (i.e. the one which
started from the last time it was visited), subtracts
TTRT and adds the result to its lateness. If the latter is
non-negative, the flow does not transmit packets (since
this would delay the revolution for the synchronous
flows); otherwise, the asynchronous bandwidth of the
flow is assigned the absolute value of lateness. In this
last case, lateness is reset to zero and the flow transmits
its packets without exceeding its bandwidth. The
following assertion is proved in Appendix B:

Proposition 1
“The algorithm performed by PTTSD to compute the

available bandwidth for an asynchronous flow is
equivalent to that performed by a TTP node with no
synchronous traffic (in the absence of failures).”

As regards the initialization of the state variables

related to new synchronous or asynchronous flow
activation, the following simple operations are needed:
• for a synchronous flow: set 0i∆ = ; select the

synchronous bandwidth iH according to the flow’s
requirements ;

• for an asynchronous flow: add the flow at the end of
the asynchronous flow set; 0jL = and assume that

the “previous visit” occurred at the start time of the
ongoing revolution.

The pseudo-code for PTTSD is shown in Figure 3.

Sync_Flow_Init (synchronous flow i)
∆i=0;
Select_synchronous_bandwidth Hi

Async_Flow_Init (asynchronous flow j)
Lj = 0 ;
last_visit_timej = start_of_curr_revolution;

Major_Cycle_Visit (synchronous flow i)
∆i+= Hi;
q=first_packet_transmission_time;

while ((∆i>=q) and (q > 0))
{ transmit_packet (q);
 ∆i -= q;
 elapsed_time+= q; }
if (q=0) ∆i=0;

Minor_Cycle_Visit (synchronous flow i)
q=first_packet_transmission_time;
if (q > 0)
{ transmit_packet (q);
 ∆i -= q;
 elapsed_time += q; }
if (q=0) ∆i=0;

Async_Flow_Visit (asynchronous flow j)
t = current_time;
earlyness = TTRT-Lj – (t-last_visit_timej);
if (earlyness > 0)
{ Lj = 0;

q=first_packet_transmission_time;
 while ((earlyness>=q) and (q > 0))
 { transmit_packet (q);
 earlyness -= q; } }
else Lj = - earlyness;
last_visit_timej = t;

PTTSD revolution ()
 elapsed_time=0;
 for (i=1 to NS) Major_Cycle_Visit (i);
 i = 1;
 while((elapsed_time<sum(Hh)) and (i<=NS))
 { if (∆i>0) Minor_Cycle_Visit (i);
 i ++; }
 for (j=1 to NA) Async_Flow_Visit (j);

Figure 3 - Pseudo-code for PTTSD

IV. FLUID FLOW ANALYSIS OF PTTSD
In order to show how PTTSD approximates the DC

paradigm, we derived the fluid-flow model of PTTSD.
Fluid-flow PTTSD has been obtained under the
following assumptions:

a) packets are infinitely divisible;

 6

b) The limits
0

lim ()i
TTRT

H TTRT
→

 exist and are finite

1.. Si N= .
Under assumption a), the behavior of PTTSD can be

greatly simplified:
- during a major cycle, a synchronous flow is

serviced for a time equal to its synchronous
bandwidth (provided it has enough backlog). No
service lag is accumulated;

- no traffic can serviced during the minor cycle, since
every synchronous flow (either backlogged or idle)
has a null service lag at the beginning of the minor
cycle;

- each asynchronous flow is serviced for a time equal
to its asynchronous bandwidth, which is computed
at the server visit on the flow;

- the protocol constraint (3) can be reformulated as
follows:

hh S
H TTRT

∈
≤∑ (4)

This simplified model of PTTSD (which we will refer

to as “TTSD” hereafter, since it does not consider
packets) can be described by the following pseudo-
code.

Sync_Flow_Init (synchronous flow i)
Select_synchronous_bandwidth Hi;

Async_Flow_Init (asynchronous flow j)
Lj = 0 ;
last_visit_timej = start_of_curr_revolution;

Major_Cycle_visit (synchronous flow i)
B = current_backlog(i);
Transmit (min (B,Hi));

Async_Flow_Visit (asynchronous flow j)
t = current_time;
earliness = TTRT- Lj – (t-last_visit_timej);
if (earliness > 0)
{ Lj = 0;

B = current_backlog(j);
Transmit (min (B,earliness));

}
else Lj = - earliness;
last_visit_timej = t;

PTTSD revolution ()
 for (i=1 to NS) Major_Cycle_Visit (i);
 for (j=1 to NA) Async_Flow_Visit (j);

Figure 4- pseudo-code for TTSD

A system model of TTSD, reported in Figure 5 can be
built considering the parallel between the token

circulation in a ring and the sequence of server visits in
TTSD. We have proved in the Appendix that the
algorithm performed when computing the bandwidth
which the serviced asynchronous flow is entitled to is
equal to that performed by the asynchronous subsystem
in a TTP node. Fairly obviously, the same can be said
for a synchronous flow. Therefore, it is possible to
analyze the system model as it was a peculiar logical
TTP ring.

server

...

sy
nc

hr
on

ou
s q

ue
ue

s

...

as
yn

ch
ro

no
us

 q
ue

ue
s

1

1

2

2

NA

NS

to
ke

n

Figure 5 – system model

To construct the fluid-flow model abstraction, we

start from the system model, and we let 0TTRT → .
Note that this limit operation is possible since we have
assumed 0τ = . In order for the protocol constraint to
hold, the previous limit operation requires 0kH → ,

k S∀ ∈ . This is why we have stated assumption b) at
the beginning of this Section. As a consequence of this
limit operation, in any finite interval time t∆ , the token
performs an infinite number of revolutions, each
infinitely quickly, and each time the token visits a
backlogged queue this receives an infinitesimal service
according to TTSD.

Before deriving the fluid-flow model of the system
model, we need to investigate the timing properties of
the latter.

 7

a. Timing Properties of TTSD
In a generic TTP network, with n nodes that can

transmit both synchronous and asynchronous traffic, the
following Lemma holds:

Lemma
For any integers x ≥ 1; l ≥ 1; c > 1; 1 ≤ y ≤ n; 1 ≤ i ≤

n; and 1≤ m ≤ n; if hx,y = Hy for all x,y, (x,y ≥ l,m), then,
under the protocol constraint (4):

1,

,
, , 1

c i n

x y h
x y c i h

a TTRT H τ
+

= =

≤ − −∑ ∑ , , 1,c i l m≥ + (5)

Proof
See [5].

Note that the hypothesis of the Lemma requires

synchronous transmissions to be constant starting from
at least token visit (c-1, i).

For TTSD, the above Lemma can be reformulated

taking into account the following differences with the
model analyzed in [5]:
− 0τ = ;
− left summation accounts for NA+1 consecutive

token visits on asynchronous queues;
− regardless of the way synchronous and

asynchronous queues are interleaved, if the token
starts and ends on the same asynchronous queue, it
also visits all the NS synchronous queues in the
meantime.

Therefore, the above Lemma is reduced to:

Lemma
In our system model, for any integers x ≥ 1; l ≥1; c >

1; 1 ≤ y ≤ NA; 1 ≤ i ≤ NA; and 1≤ m ≤ NS; if hz,w = Hw for
all z,w, (z,w ≥ l,m), then, under the protocol constraint
(4),

1,

,
, ,

c i

x y h
x y c i h S

a TTRT H
+

= ∈

≤ −∑ ∑ , , 1,c i l m> + (6)

From the above Lemma the following corollary can be
derived:

Corollary 1
In our system model, for any integers x ≥ 1; l ≥1; c >

1; 1 ≤ y ≤ NA; 1 ≤ i ≤ NA; and 1≤ m ≤ NS; if hz,w = Hw for

all z,w, (z,w ≥ l,m), then, under the protocol constraint
(4)

1, 1

,
, ,

()
Ac N i

x y A h
x y c i h S

a N TTRT H
+ + −

= ∈

≤ −∑ ∑ , , 1,c i l m> + (8)

Proof
In a system model with NA asynchronous queues,

(NA+1) token revolutions include (NA+1)·NA token
visits on asynchronous queues. Therefore, by applying
NA times inequality (6), the proof follows
straightforwardly.

Note
 If no traffic is transmitted from ϕ asynchronous

queues out of NA from visit (c,i) to (c+NA−ϕ+1, i-1)
(because the token is late on every visit, or because the
queues are not backlogged), the asynchronous
bandwidth will be shared among NA’=NA−ϕ
asynchronous queues, and therefore Corollary 1 can be
rewritten replacing NA with NA’.

The above results will be used to prove Theorem A

and Theorem B, which then lead to the following:
- if there are late asynchronous queues and the

protocol constraint inequality holds in a strict sense,
the token will be early on all the asynchronous
queues after a finite number of token revolutions;

- if the token arrives early on all the asynchronous
queues, it keeps arriving early as long as the
hypothesis of the Lemma holds.

Theorem A
In our system model, for any integers x ≥ 1; l ≥1; c

> 1; 1 ≤ y ≤ NA; 1 ≤ i ≤ NA; and 1≤ m ≤ NS; if:
− hz,w = Hw for all z,w, (z,w ≥ l,m);
− the protocol constraint (4) holds;
− for any given asynchronous queue i the token is

early during the c-th visit, where , 1,c i l m> +

then the token will be early on (c+1)-th visit too.

Proof
it follows from (6).

1, 1 1,

1, , , ,
, , , ,

()

c i c i

c i c i x y h x y h
x y c i h S x y c i h S

h h
h S h S

t t a H a H

TTRT H H TTRT

+ − +

+
= ∈ = ∈

∈ ∈

− = + ≤ + ≤

≤ − + =

∑ ∑ ∑ ∑

∑ ∑

 8

If the token is early on its c-th visit to the
asynchronous queue i at time tc,i, tc+1,i - tc,i ≤ TTRT is a
sufficient condition for it being early on its (c+1)-th
visit tc+1,i.

Theorem B
In our system model, for any integers x ≥ 1; l ≥1; c

> 1; 1 ≤ y ≤ NA; 1 ≤ i ≤ NA; and 1≤ m ≤ NS; if:
− hz,w = Hw for all z,w, (z,w ≥ l,m);
− the protocol constraint (4) holds;
− at time t0 the token is late on at least one

asynchronous queue,

then, at worst after the following number of token
revolutions:

h
h S

A
h

h S

H
N

TTRT H
η ∈

∈

⎡ ⎤
⎢ ⎥

= ⋅ ⎢ ⎥−⎢ ⎥
⎢ ⎥

∑
∑

 (9)

the token will not be late on any asynchronous queue.

Proof
Let us define Lc,i, “lateness” on the token’s c-th visit

to asynchronous queue i, the quantity:

(){ }, , 1, 1,max 0,c i c i c i c iL t t TTRT L− −= − − +

where L0,i=0 ∀i∈ A.
The timing properties of the TTP ensure that – when

the network operates correctly and under the protocol
constraint – we have:

 ,0 c i h
h S

L H
∈

≤ ≤ ∑

While the lower bound for Lc,i is obvious from the
definition, the rightmost inequality is an immediate
consequence of “Johnson and Sevcik’s Theorem” [2].

Let us assume that at time tc,I the token is late on at

least the asynchronous queue i. This means that at least
one out of NA asynchronous queues is not transmitting
anything. Therefore, from Corollary 1 it follows that:

()

, 1

, , ,
, ,

1

A

A

c N i

c N i c i A h x y
h S x y c i

A h A h
h S h S

A h
h S

t t N H a

N H N TTRT H

N TTRT TTRT H

+ −

+
∈ =

∈ ∈

∈

− = ⋅ + ≤

⎡ ⎤
⋅ + − ⋅ − =⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

⋅ − −⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑

∑

The above result implies that:
− the time duration of NA token revolutions is less

than or equal to NA ·TTRT;
− after at most NA token revolutions, a time interval

equal to hh S
TTRT H

∈
−∑ has been recovered, i.e.

queue i lateness decreases by hh S
TTRT H

∈
−∑ .

Since the maximum lateness that a queue can

experience is upper bounded by hh S
H

∈∑ , the

derivation of (9) is straightforward.

It is therefore possible to say that the system model

with constant synchronous transmissions will always
reach a state in which:
− if hh S

H TTRT
∈

<∑ , then the token is early on

each queue visit after at most γ revolutions ;
− if hh S

H TTRT
∈

=∑ , then a null quantity of

asynchronous traffic can be transmitted.

This state, which will be named stationary state, is

always reached in a finite interval time.
A similar result has been proven [22] for an FDDI

network in which the effects of accumulated lateness
are neglected, i.e. the Lc counters are always reset upon
a token arrival. Our improvements with respect to [22]
are:
• the proof that such a state is always reached in a

finite number of token revolutions even if lateness is
taken into account;

• an upper bound to these revolutions, quantified by
(9).

b. Asynchronous vector
We will now focus on the evolution of the

asynchronous traffic in the stationary state, under the
hypothesis that the asynchronous queues are always

 9

backlogged. The rationale behind it will be explained in
Section IV.c

Let (c*,1) be the c*-th token visit on asynchronous

queue 1 in the stationary state. Having assumed that
every asynchronous queue is always backlogged,
Lemma ensures that:

* 1,1

,
, *,1

c

x y h
x y c h S

a TTRT H
+

= ∈

= −∑ ∑

Let us now define the following vector
0, 1,[,]

ANV V V=V K of NA+1 components:

*,
*,

0 , * 1,1
, *,1

1...

()
A

i c i A
c N

h x y c
h S x y c

V a i N

V TTRT H a a +
∈ =

= =⎧
⎪⎪
⎨ = − − =⎪
⎪⎩

∑ ∑

Notice that all the vector’s elements are known at
time *, Ac Nt , i.e. within a single token revolution. We
will call vector V the asynchronous vector of token
revolution c*.

Let us now instantiate (6) to (c*,2):
* 1,2 * 1,1

, , * 1,2 *,1
, *,2 , *,1

c c

x y x y c c h
x y c x y c h S

a a a a TTRT H
+ +

+
= = ∈

= + − = −∑ ∑ ∑

Similarly,

* 1,3 *,2 2 * 1, *, 1 1 , ...
A A Ac c c N c N Na a V a a V+ + − −= = = =

* 2,1 *, * 2,2 * 1,1 0 ,
Ac c M N c ca a V a a V+ + += = = =

Since
* 1,1

,
, *,1

c

x y h
x y c h S

a TTRT H
+

= ∈

= −∑ ∑ , it must be ac*+1,2

= ac*,1 =V1.

From the above recurrence formulas, it is

straightforward to prove:

Corollary 2
When the system model is in the stationary state, if

the asynchronous vector related to token rotation c* is
known, then:

[], (*) mod (1)Ac j j c c Na V − − += , ∀c ≥ c*, 1 ≤ j ≤ NA (10)

Proof
The proof is obvious, and is thus omitted.

Equality (10) shows that the sequence of

transmissions from each asynchronous queue is
periodic, with a period of (NA+1) token revolutions4.

Corollary 3
When the system model is in the stationary state, the

service difference between any two backlogged
asynchronous queue over any time interval is upper
bounded by:

,i j hh S
TTRT Hη

∈
= −∑ , 1 ≤ j ≤ NA (11)

Proof
The proof is obvious, and is thus omitted.

Note:
In the stationary state, if we assume that the

asynchronous queues are always backlogged, the
average token revolution time depends on the number
of asynchronous queues NA: it is clear from Corollary 1
that NA+1 token revolutions have a duration of:

(1) ()

(1) ()

A h A hh S
h S

A hh S

N H N TTRT H

N TTRT TTRT H

∈
∈

∈

+ ⋅ + ⋅ − =

+ ⋅ − −

∑ ∑

∑

This means that the average token rotation time is:

(1) ()

1

()

1

A hh S

A

hh S

A

N TTRT TTRT H

N

TTRT H
TTRT

N

∈

∈

+ ⋅ − −
=

+

−
−

+

∑

∑

Clearly, the bigger NA is, the closer to TTRT the
average token rotation time is. Note that the only two
cases in which in the stationary state the average token
rotation time is equal to TTRT are NA=∞ and

hh S
H TTRT

∈
=∑ . For finite NA values and if

inequality holds in the protocol constraint, the average
token revolution time is less than TTRT in the stationary
state. Since a synchronous queue k is served for a time
Hk on each token visit, keeping the token revolution
time close to TTRT means keeping the rate at which a

4 Clearly, if equality holds in the protocol constraint,

asynchronous transmissions are always null, and therefore
periodical.

 10

synchronous queue can be served close to (but higher
than) Hk / TTRT.

c. Fluid-flow rates
In this section, we first detail the procedure for

obtaining the fluid-flow model, which, as stated before,
requires the limit operation 0TTRT → .

After that, we calculate the instantaneous rates for
each synchronous and asynchronous flow. To achieve
this, we observe the behavior of the fluid-flow model in
a time interval [,)t t t+ ∆ in which we assume that the
state of each queue (empty or backlogged) will not
change, and we let 0t∆ → . Obviously, there exists a

*t∆ (equal to the minimum backlog among all the
queues at time t) such that for any *t t∆ ≤ ∆ the fluid-
flow model exhibits such a property. Note that the order
in which the above limit operations are carried out is
fundamental, since it makes no sense to calculate
instantaneous rates in a polling model with finite
sojourn times.
− on each token visit, backlogged queues always hold

the token for the maximum allowed time;
− the asynchronous queues can be partitioned into

two disjoint subsets: one backlogged, which
includes queues with indexes 1 2, ,..., Mα α α ,

1 21 ... M ANα α α≤ ≤ ≤ ≤ ≤ , and the other includes
empty queues;

− the synchronous queues can be partitioned into two
disjoint subsets: one backlogged, which includes
flows with indexes 1 2, ,..., Kσ σ σ ,

1 21 ... K SNσ σ σ≤ ≤ ≤ ≤ ≤ , and the other
including empty queues.

Let us denote by { }1 2 ()() , ,...,A M tB t α α α= and

{ }1 2 ()() , ,...,S K tB t σ σ σ= the subsets of backlogged

queues previously defined; clearly, the cardinality and
composition of ()AB t and ()SB t are time varying. We
denote with ()M t the cardinality of ()AB t .

Since our goal is to find timing properties that hold in
the time interval [,)t t t+ ∆ , queues that are never
backlogged in [,)t t t+ ∆ need not be considered. Thus,
in the proof process of Theorem C, summations on
asynchronous/synchronous queues will be performed on
subsets ()AB t and ()SB t respectively. In order to
simplify the notation drastically, we will use the
subscript 1... ()M t instead of 1 2, ,..., Mα α α .

Theorem C
If the limit ()

0
 limk kTTRT
C H TTRT

→
= exists and is

finite k S∀ ∈ , then the instantaneous normalized rates
at which synchronous and asynchronous queues are
served in the fluid-flow model at time t are,
respectively:

[]()

()

() 1
 ()

()
S

kS
k

h
h B t

M t C
R t

M t C
∈

+ ⋅
=

+ ∑
()Sk B t∀ ∈ (12)

()()

()

1

 ()
()

S

S

h
h B tA

j
h

h B t

C

R t
M t C

∈

∈

−

=
+

∑

∑
 ()Aj B t∀ ∈ (13)

Proof
Let us distinguish two cases:

()S
hh B t

H TTRT
∈

=∑ and
()S

hh B t
H TTRT

∈
<∑ .

Case 1
If

()S
hh B t

H TTRT
∈

=∑ , then
()

1
S

hh B t
C

∈
=∑ , i.e.

only synchronous queues are served. As a
consequence, () () S

kkR t C= , and () () 0 A
jR t = , and

therefore (12) and (13) are obviously verified.

Case 2

()S
hh B t

H TTRT
∈

<∑ . Let us refer to Figure 6, where

t is the time at which system observation starts for an
interval time t∆ . We assume that from t onward
synchronous transmissions remain constant, and
therefore the Lemma hypothesis holds. In the most
general case the system will experience a transitory
phase which has been proved to be finite by Theorem B.
Let 1t be the time instant at which the system reaches
the stationary state, and let us count from 0 onward the
token revolutions beginning from 1t .

timet t1

transitory stationary state

rev. 0 rev. 1 rev. srev. s-1
t+∆t

......

Figure 6 – Transmissions in the time interval [,)t t t+ ∆

As proved in Corollary 2, in s token revolutions
asynchronous queue j can rely on the following
service time:

 11

() ()

1

, ()
0

1

mod () 1
0

() 1 S

s

c j hh B t
c

r

j l M t
l

sa TTRT H
M t

V

−

∈
=

−

− +
=

⎢ ⎥ ⎡ ⎤= ⋅ −⎢ ⎥ ⎢ ⎥⎣ ⎦+⎣ ⎦

+

∑ ∑

∑
 (14)

where:

()() 1s q M t r= ⋅ + + ,

() 1
sq

M t
⎢ ⎥

= ⎢ ⎥+⎣ ⎦
, { }0, 1,...q∈ , 0 ()r M t≤ ≤

From Figure 6 it follows:

()
()1

1 ,
0 1 ()S

M ts

c j h
c j h B t

t TTRT t t a H t
−

= = ∈

⎡ ⎤
⎢ ⎥∆ − ≤ − + + ≤ ∆
⎢ ⎥⎣ ⎦

∑ ∑ ∑

After some algebraic manipulations and bearing in
mind (14), we obtain:

()
() 1

1 () mod(() 1)
() () 0 1

()
() 1

S S

M t r

h h j l M t
h B t h B t j l

st TTRT t t s H M t TTRT H V t
M t

−

− +
∈ ∈ = =

⎡ ⎤⎢ ⎥ ⎢ ⎥∆ − ≤ − + ⋅ + ⋅ ⋅ − + ≤ ∆⎢ ⎥+ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑ ∑∑ (15)

Let us take the limit TTRT→0 of (15). When

TTRT→0, s→∞. Since the first and fourth addenda in
(15) are O(TTRT), they both tend to 0. Furthermore,
since the second and third addenda are O(s ·TTRT), (15)
is reduced to:

()

0

()
lim

() 1
S

hh B t

TTRT

M t TTRT H
s t

M t
∈

→

⎧ ⎫⋅ +⎪ ⎪⋅ = ∆⎨ ⎬
+⎪ ⎪⎩ ⎭

∑
 (16)

If ()
0

 limk kTTRT
C H TTRT

→
= exists and is finite, (16)

leads to:

()
0

()

() 1lim
()

S

TTRT h
h B t

M ts TTRT t
M t C→

∈

+
⋅ = ∆ ⋅

+ ∑
 (17)

Let () (,)S
kW t t t+ ∆ and () (,)A

jW t t t+ ∆ be the service
time received by synchronous queue k and
asynchronous queue j respectively in the time interval
[,)t t t+ ∆ . By definition:

()
() 0

0

lim (,)
() lim

S
kS TTRT

k t

W t t t
R t

t
→

∆ →

⎧ ⎫+ ∆⎪ ⎪= ⎨ ⎬
∆⎪ ⎪⎩ ⎭

 (18)

()
() 0

0

lim (,)
() lim

A
jA TTRT

j t

W t t t
R t

t
→

∆ →

⎧ ⎫+ ∆⎪ ⎪= ⎨ ⎬
∆⎪ ⎪⎩ ⎭

 (19)

We have:

[]()
0

()

() 1
lim (,)

()
S

kS
kTTRT h

h B t

M t C
W t t t t

M t C→

∈

+ ⋅
+ ∆ = ⋅∆

+ ∑
 (20)

while on the other hand, since :
1

()
,

0 0 0
lim (,) lim

s
A

c jjTTRT TTRT c
W t t t a

−

→ → =

⎡ ⎤
+ ∆ = ⎢ ⎥

⎢ ⎥⎣ ⎦
∑

from (14) and (17):

()
0

()

1

lim (,)
()

S

S

h
h B (t)A

jTTRT h
h B t

- C

W t t t t
M t C

∈

→

∈

+ ∆ = ⋅∆
+

∑

∑
 (21)

By substituting (20) and (21) into (18) and (19), the
thesis follow straightforwardly.

d. Worst-Case Timing Properties of TTSD
We now derive the worst-case token return time for a

synchronous flow in TTSD.

Generalized Johnson and Sevcik’s Theorem for TTSD
Let k S∈ be a synchronous queue in our system

model; let NA be the cardinality of the asynchronous
queues set A. Then, for any integer 1x ≥ , 1v ≥ , under
the protocol constraint (4):

 12

, ,
,

1

x v k x k h
h S h k

h
A h S

t t v TTRT H

v TTRT H
N

+
∈ ≠

∈

− ≤ ⋅ +

⎡ ⎤⎢ ⎥
− ⋅ −⎢ ⎥⎢ ⎥+ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑

∑
 (22)

Proof
The proof process closely follows the one given in

[5] for a generic TTP network. A worst-case scenario
for the token return time at synchronous queue k can be
defined as follows:
• no transmission (either synchronous or

asynchronous) takes place from 1,x kt t −= to ,x kt t=
inclusive, i.e. during the token revolution that
precedes ,x kt t= .

• synchronous queue k becomes backlogged at the
time instant ,x kt t+= .

• Every synchronous and asynchronous queue is
backlogged from time ,x kt t+= onwards, and
therefore every queue holds the token for the
maximum time allowed by the TTP rules.

Such a scenario has been proved to be the worst-case
for a TTP network in [6].

Sub-case 1: v=1.
Regarding the first token revolution following ,x kt t= ,
it is possible to say that:
- if the first queue visited by the token after ,x kt t= is

an asynchronous one, it will hold the token for a
time interval equal to TTRT (recall pseudo-code in
Figure 4);

- any synchronous queue h will hold the token for a
time interval hH ;

the above two statements yield:

, ,
,

x v k x k h
h S h k

t t TTRT H+
∈ ≠

− = + ∑ (23)

which is only reached in a worst-case scenario, and
therefore inequality (22) holds for v=1.

Sub-case 2: v>1.

The time interval 1, ,[,)x k x v kt t+ + includes ()1v −
complete token revolutions. Based on the worst-case
scenario definition, the following statements can be
assessed:

- the overall synchronous transmission within the
time interval 1, ,[,)x k x v kt t+ + is:

()1 hh S
v H

∈
− ⋅∑ (24)

- starting from the first token visit on an
asynchronous queue following time 1,x kt + , the
hypothesis of the Lemma holds; we can then apply
it for any group of consecutive 1AN + token visits
on asynchronous flows, for an overall number of
visits equal to ()1 1Av N− ⋅ − . Therefore, it is
possible to state that the overall asynchronous
transmission within the time interval 1, ,[,)x k x v kt t+ +
is upper bounded by:

()

(1) 1
1

1
1

A
h

A h S

h
A h S

v N TTRT H
N

vv TTRT H
N

∈

∈

⎛ ⎞⎡ ⎤− ⋅ −
⋅ − =⎜ ⎟⎢ ⎥ ⎜ ⎟+⎢ ⎥ ⎝ ⎠

⎛ ⎞⎡ ⎤⎢ ⎥
− − ⋅ −⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟+⎢ ⎥⎣ ⎦⎣ ⎦ ⎝ ⎠

∑

∑
 (25)

Putting (23), (24) and (25) together, after a few
algebraic manipulations, we obtain:

, ,
,

1

x v k x k h
h S h k

h
A h S

t t v TTRT H

v TTRT H
N

+
∈ ≠

∈

− = ⋅ +

⎡ ⎤⎢ ⎥
− ⋅ −⎢ ⎥⎢ ⎥+ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑

∑
 (26)

Since (26) has been calculated in a worst-case
scenario, for every possible scenario (22) holds.

Note that inequality (22) also holds if 0AN = .
However, in this particular case, tighter bounds can
easily be derived.

V. PTTSD AS AN APPROXIMATION OF THE DC PARA-
DIGM

Let us denote with ()iR t the instantaneous service
rate of a generic flow at time t . At any time instant t ,
under fluid-flow PTTSD the service rate of a
backlogged flow is:

 13

[]

()

()

()

() 1
()

()

() 1

()
()

S

S

S

i
S

j
j B t

i j
j B t

A
j

j B t

M t h
C i B t

M t h

R t h

C i B t
M t h

∈

∈

∈

⎧ + ⋅
⋅ ∈⎪

+⎪
⎪⎪= ⎨ −
⎪
⎪ ⋅ ∈

+⎪
⎪⎩

∑

∑

∑

 (27)

Synchronous flow rates are not constant, since they
depend on the number of backlogged asynchronous and
synchronous flows. However, it is straightforward to
see that, as the number of backlogged asynchronous
flows increases, the synchronous service rates
approaches a minimum value ih C⋅ . Therefore, the
service offered to backlogged asynchronous flows
upper bounds the synchronous flow rates. On the other
hand, each asynchronous flow always obtains an equal
share of the available bandwidth.

When ()M t is high, (27) can be rewritten as:

()

()

() 1 1 ()
()

S

i S

i
j A

j B t

h C i B t

R t
h C i B t

M t ∈

⋅ ∈⎧
⎪⎪ ⎛ ⎞≅ ⎨ ⎜ ⎟− ⋅ ∈⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

∑
 (28)

Expression (28) is formally equal to that obtained
from (2) in the particular case where best-effort flows
weights are all equal. Note that, when no asynchronous
flow is backlogged (i.e. () 0M t =), (27) yields:

()

() ()

S

i
i S

j
j B t

hR t C i B t
h

∈

= ⋅ ∈
∑

Therefore, fluid-flow PTTSD embodies the DC
paradigm when no asynchronous flow is backlogged
and approximates an unweighted version when
asynchronous flows are backlogged.

The approximation improves as the number of back-
logged asynchronous flows increases. Figure 7 and
Figure 8 show the ratio between the (synchronous and
asynchronous) rates in fluid-flow PTTSD (27) and in
the ideal case (28) against ()M t and for various syn-
chronous loads

()S
jj B t

h
∈∑ . Both figures show that a

good approximation of the DC paradigm (within 10%)
is achieved when as few as ten asynchronous flows are
backlogged.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2 4 6 8 10 12 14

sum (hj) = 0.2
sum (hj) = 0.4
sum (hj) = 0.6
sum (hj) = 0.8

M(t)
Figure 7 – normalized synchronous rates

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14

sum (hj) = 0.2
sum (hj) = 0.4
sum (hj) = 0.6
sum (hj) = 0.8

M(t)
Figure 8 – normalized asynchronous rates

VI. CONCLUSIONS
In this paper we have introduced an innovative

scheduling paradigm, the Dual Class paradigm,
showing that it can be taken as a reference to devise
efficient services disciplines for integrated services
networks. Specifically, the DC paradigm considers the
simultaneous presence of both rate-guaranteed and best-
effort traffic, and maximizes the service given to best-
effort traffic while meeting the rate guarantees. We
have devised a new service discipline, called PTTSD,
which manages at the same time both rate-guaranteed
(synchronous) and best-effort (asynchronous) traffic.
We have showed that PTTSD approximates the Dual
Class paradigm by means of a fluid-flow analysis.

APPENDIX A: TIMED TOKEN PROTOCOL
The Timed Token Protocol has been used as a MAC

protocol by the FDDI technology and other network
standards. In the following, we describe the TTP as it is
implemented in FDDI, and therefore we refer to a

 14

physical ring with n nodes attached to it. Transmission
rights are granted by the circulation of a special packet,
called token. The TTP accounts for two distinct classes
of traffic on each node: synchronous traffic, which is
transmitted for a time duration up to a given maximum
on each token visit, and asynchronous traffic, which can
only be transmitted if the token arrives earlier than
expected.

At ring initialization, a target token rotation time
(TTRT) is selected. Any node that supports
synchronous traffic is then assigned a portion 0iH ≥ of
TTRT to transmit it. Each node has two timers: the
Token Rotation Timer (TRT), and the Token Holding
Timer (THT). The TRT always counts down and a
node’s THT counts down only when the node is
transmitting asynchronous traffic. If a node’s TRT
reaches 0 before the token arrives at the node, TRT is
reset to TTRT and the arriving token is marked as late
by incrementing the node’s late counter Lc by one. At
ring initialization, Lc is set to 0 on each node.

Only the node which possesses the token is able to
transmit. When node receives the token, it does the
following:
• if 0Lc > , sets : 1Lc Lc= − and : 0THT =

Otherwise, :THT TRT= and :TRT TTRT= ;
• if it has synchronous traffic, it transmits it until

either a period iH has elapsed or all the
synchronous traffic has been transmitted, whichever
occurs first;

• if it has asynchronous traffic, it transmits it until the
THT counts down to 0 or until all its asynchronous
traffic has been transmitted, whichever occurs first;
note that a transmission which is already in progress
when THT expires is always completed
(asynchronous overrun);

• it passes the token to the next node on the ring.
The choice of synchronous bandwidths (or

synchronous capacities) hH , 1...h n= , must obey the
following constraint:

1.. hh n
H TTRT τ

=
≤ −∑

called the protocol constraint, where (the latency) is
the portion of token rotation time which is unavailable
for traffic transmission, due to protocol and media
dependent overheads and to the occurrence of
asynchronous overruns [2].

The timing properties of the TTP have been widely
explored over the last two decades ([2]-[7]). Two very

well known results related to the TTP timing properties
are as follows:
• under the protocol constraint, the maximum token

revolution time is upper bounded by 2 TTRT⋅ , and
the average token revolution time is upper bounded
by TTRT [2];

• it is possible to identify the worst-case scenario for
the token return time [6], and to calculate the worst-
case v -th token return time for any 1v ≥
(Generalized Johnson and Sevcik’s Theorem) [5].

APPENDIX B: PROOF OF PROPOSITION 1

Proposition 1
“The algorithm performed by PTTSD to compute the

available bandwidth for an asynchronous flow is
equivalent to that performed by a TTP node with no
synchronous traffic (in the absence of failures).”

Proof
Let us suppose that j is a TTP node, and let us

denote with ,c jt the time instant at which the token
reaches node j for c -th time. We will use the same
subscript pair for denoting quantities related to node j
sampled at the c -th token visit. We now compute the
asynchronous bandwidth in of node j at time ,c jt ,
under the hypothesis that it has no synchronous traffic,
according to the TTP rules reported in Appendix A. We
need to distinguish two cases:

Case 1: the token was late on the previous visit at node
j

In this case, at time 1,c jt − we have 0Lc ← (note that
1Lc = just before the token arrival) and TRT is not

reset. Let us denote with 1,c jL − the difference
0TTRT TRT− > at time 1,c jt − . Since TRT always

counts down, the necessary and sufficient condition for
the token to be early at time ,c jt is that TRT has not
expired yet, i.e. , 1, 1,c j c j c jt t TTRT L− −− ≤ − . In that
case, at time ,c jt , we have:

()1, , 1,c j c j c jTRT TTRT L t t− −= − − −

and THT TRT= , and the available asynchronous
bandwidth for node j is thus:

()1, , 1,c j c j c jTTRT L t t− −− − − .

 15

If the above condition is not verified, at time ,c jt the

TRT value is ()1, , 1,2 c j c j c jTTRT L t t− −− − − .

Case 2: the token was early on the previous visit at
node j

In this case, at time 1,c jt − we had 0Lc ← (note that
0Lc = just before the token arrival) and

TRT TTRT← . Therefore, the same formulas of case 1
also apply to this case, provided that we set 1, 0c jL − = .

The above two cases can be summarized as follows:
The token is early on its c -th visit to node j if and

only if:

, 1, 1,c j c j c jt t TTRT L− −− ≤ −

In that case the asynchronous bandwidth is:

()1, , 1, 0c j c j c jTTRT L t t− −− − − ≥

and , 0c jL = .
Otherwise, the asynchronous bandwidth is null and:

()
()

, 1, , 1,

1, , 1,

2c j c j c j c j

c j c j c j

L TTRT TTRT L t t

TTRT L t t

− −

− −

⎡ ⎤= − − − −⎣ ⎦
⎡ ⎤= − − − −⎣ ⎦

Therefore, assuming that node j can manage two
variables jL and jt , which are correctly initialized at
ring startup, in order to compute the asynchronous
bandwidth of a TTP node with no asynchronous traffic
on token arrival, the following algorithm can be
performed:
a) compute ()j jb TTRT L now t= − − − ;

b) if the latter is positive, it represents the available
asynchronous bandwidth; set 0jL ← ;

c) otherwise, the available asynchronous bandwidth is
null; set jL b←− ;

d) set jt now← .
Which is exactly what the Async_Flow_Visit

procedure in the pseudo-code of Figure 3 does.

VII. REFERENCES
[1] R.M. Grow: “A Timed Token Protocol for Local Area Networks”,

Proc. Electro ’82, Token Access Protocols, Paper 17/3, May 1982.
[2] K.C. Sevcik and M.J. Johnson: “Cycle Time Properties of the FDDI

Token Ring Protocol”, IEEE Transaction on Software Engineering,
Vol. SE13, No. 3, pp. 376-385, March 1987.

[3] G. Agrawal, B. Chen, W. Zhao, S. Davari: “Guaranteeing
Synchronous Message Deadlines with the Timed Token Medium
Access Control Protocol”, IEEE Transaction on Computers, vol. 43, No
3, pp. 327-343, March 1994.

[4] M. Hamdaoui and P. Ramanathan: “Selection of Timed Token
Protocol Parameters to Guarantee Message Deadlines”, IEEE
Transaction on Networking, vol. 3, No 3, pp. 340-351, March 1995.

[5] S. Zhang and A. Burns: “Timing Properties of the Timed Token
Protocol”, Technical Report, Department of Computer Science,
University of York March 1994.

[6] S. Zhang and E.S. Lee: “The Worst-Case Scenario for Transmission
of Synchronous Traffic in an FDDI Network”, Technical Report,
Center for Communications Systems Research, University of
Cambridge, UK November 1998.

[7] J.P.C. Blanc, L. Lenzini, “Analysis of Communication Systems with
Timed Token Protocols Using the Power-series Algorithm”,
Performance Evaluation, Volumes 27&28, November 1996, pp. 391-
409.

[8] D. Dykeman, and W. Bux: “Analysis and Tuning of the FDDI
Media Access Control Protocol”, IEEE Transaction on Networking,
vol. 6, No 6, pp. 997-1010, July 1988.

[9] A.K. Parekh and R.G. Gallager: “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: the Single
Node Case”. IEEE Transaction on Networking, Vol. 1, No. 3, pp. 344-
357, June 1993.

[10] D. Saha, S. Mukherjee, K. Tripathi: “Carry-Over Round Robin: A
Simple Cell Scheduling Mechanism for ATM Networks”. IEEE
Transaction on Networking, Vol. 6, No. 6, pp. 779-796 (December
1998).

[11] The ATM Forum, Traffic Management Specification, Version 4.1,
March 1999.

[12] I. Stoica, H. Abdel-Wahab, and K. Jeffay, “On the Duality between
Resource Reservation and Proportional Share Resource Allocation,”
Proceedings, Multimedia Computing and Networking 1997, SPIE
Proceedings Series, Volume 3020 San Jose, CA, pp 207-214, February
1997.

[13] H. Zhang “Service Disciplines for Guaranteed Performance Service
in Packet-Switching Networks”, Proceedings of the IEEE, vol. 83, No.
10, pp. 1374-1396, October 1995

[14] R. Braden, D. Clark and S. Shenker: “Integrated Services in the
Internet Architecture: an Overview”, RFC 1633, The Internet Society,
June 1994

[15] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W.
Weiss: “An Architecture for Differentiated Services”, RFC 2475, The
Internet Society, December 1998.

[16] S. Floyd and V. Jacobson: “Link-Sharing and Resource
Management Models for Packet Networks”, IEEE Transaction on
Networking, Vol. 3, No. 4, pp. 365-386, August 1995.

[17] J. Bennett and H. Zhang: “Hierarchical Packet Fair Queueing
Algorithms”, IEEE Transaction on Networking, Vol. 5, No. 5, pp. 675-
689, October 1997.

[18] D. Stiliadis and A. Varma: “Latency-Rate Servers: A General
Model for Analysis of Traffic Scheduling Algorithms”, IEEE
Transaction on Networking, Vol. 6, No. 5, pp. 675-689, October 1998.

[19] C. Dovrolis, P. Ramanathan: “A Case for Relative Differentiated
Services and the Proportional Differentiation Model”, IEEE Network,
Vol. 13, No. 5: pp. 26-34, September 1999.

[20] M. Shreedhar and G. Varghese: “Efficient Fair Queueing Using
Deficit Round-Robin”, IEEE Transaction on Networking, Vol. 4, No. 3,
pp. 375-385, June 1996.

[21] M.H. MacGregor and W. Shi: “Deficits for Bursty Latency-critical
Flows: DRR++”, Proceedings of the IEEE International Conference on
Networks (ICON’00), Singapore , September 5 - 8, 2000.

[22] A. Valenzano, P. Montuschi, L. Ciminiera, “Some Properties of
Timed Token Medium Access Protocols”, IEEE Transaction on
Software Engineering, Vol. 16, No. 8, pp. 858-869, August 1990.

