
 

 
 

Abstract – Integrated services networks face the challenge of 
managing several traffic classes at the same time. Service 
disciplines devised for integrated services networks therefore 
need to be flexible, i.e. able to provide different types of service, 
in order to accommodate different traffic classes efficiently. In 
this paper we focus on the integration of rate-guaranteed and 
best-effort traffic, and we argue that service disciplines based on 
the Generalized Processor Sharing paradigm, which schedule 
flows according to their weights, lack the flexibility needed to 
efficiently manage both classes at the same time. We propose 
that a different service paradigm, the Dual-Class paradigm, 
which considers the two traffic classes at the same time, be used 
as a reference to devise flexible and efficient service disciplines 
for integrated services networks. We then present an innovative 
Packet Timed Token Service Discipline, which approximates a 
Dual-Class paradigm. This is shown by means of a fluid-flow 
analysis on PTTSD. 

 
Index terms – Packet scheduling, Quality of Service, 

Integrated Services, Timed Token Protocol. 

I. INTRODUCTION 
The evolution of packet-based network technologies 

over the last decade, as well as the wide spreading of an 
instance of these technologies, i.e. the Internet, as a 
global and commercial communication infrastructure, 
are challenging the traditional network service models, 
such as the original TCP/IP’s best effort model. As a 
result, new, alternative service models and traffic 
management schemes are needed in order to improve 
Quality of Service (QoS) provision. ATM-based 
network architectures naturally embody a QoS concept. 
This is done by specifying (six) standard service 
categories in terms of a set of parameters characterizing 
both the traffic presented to the network, and the QoS 
required from the network [11]. As regards the Internet, 
two main QoS architectures are considered by the IETF: 
IntServ, which provides end-to-end QoS on a per-flow 
basis, and DiffServ, which supports QoS for traffic 
aggregates [14], [15].  

A great challenge for QoS-enabling architectures 
results from the integration of services. When traffic 
flows pertaining to multiple traffic classes, each bearing 
different QoS requirements, coexist in a network, 
resource management needs to be flexible enough to 
efficiently provide each flow with a different type of 

service according to its class, at a feasible 
computational complexity.  

A key component of QoS-enabling architectures are 
the packet service disciplines (or scheduling 
algorithms) implemented at each switch, selecting 
which next packet to transmit on an output link, and 
when, on the basis of several expected performance 
results. This research area has been extensively 
investigated in recent years, as testified by the 
abundance of available literature [13]. It has been 
observed that a strict priority service discipline is not 
suitable for an integrated services network, since – 
although it provides different services for the different 
priority classes – it offers no means of controlling the 
service of each priority class [19]. Over the last decade, 
the ideal fluid-flow service discipline known as 
Generalized Processor Sharing [9], and its many packet-
based derivatives, have received much attention. These 
service disciplines allocate bandwidth to flows in 
proportion to their weights. A GPS paradigm is well 
suited for servicing best-effort traffic, since it 
distributes bandwidth fairly among flows. On the other 
hand, when weights are selected proportionally to the 
rate requirements and admission control is enforced, 
GPS has also been proved to be suitable for servicing 
rate-guaranteed traffic [9]. 

Rate-guaranteed traffic and best-effort traffic have 
very different QoS requirements: rate-guaranteed traffic 
requires a minimum rate, regardless of the network 
conditions, whilst best-effort traffic needs no such 
guarantee. From an economic perspective, rate-
guaranteed traffic flows are supposed to be billed 
according to their minimum guaranteed rate, whilst 
best-effort traffic can be charged in proportion to the 
amount of service it receives. Therefore, servicing as 
much best-effort traffic as possible, while still 
maintaining the negotiated guarantees for rate-
guaranteed traffic could also maximize the profits of 
service providers.  

GPS-based service disciplines lack the flexibility to 
efficiently account for both rate-guaranteed and best-
effort traffic at the same time. For instance, when flows 
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of both traffic classes are scheduled, they are all 
guaranteed a minimum rate; this is clearly not necessary 
for best-effort flows; on the other hand rate-guaranteed 
flows can be serviced at more than the minimum 
guaranteed rate when the switch is lightly loaded, whilst 
sharing the whole excess bandwidth only among the 
best-effort traffic would be desirable. These problems 
are due to the fact that the GPS paradigm only considers 
one type of flows. 

In order to achieve a better efficiency in the link 
capacity utilization, we suggest that a service discipline 
should approximate an alternative service paradigm, the 
Dual-Class paradigm, which explicitly considers the 
two traffic classes at the same time. In the DC 
paradigm, rate-guaranteed flows are entitled a fixed rate, 
equal to the requested rate, regardless of the network 
conditions, and best-effort flows share all the residual 
bandwidth (i.e. the bandwidth which has not been 
reserved for rate-guaranteed flows, plus the bandwidth 
instantly unused by idle rate-guaranteed flows) 
according to a GPS paradigm. The DC paradigm 
maximizes the service provided for best-effort traffic 
while still meeting the guarantees for rate-guaranteed 
traffic. Thus, a service discipline based on the DC 
paradigm seems particularly suitable for an integrated 
services network. 

We then introduce the Packet Timed Token Service 
Discipline, an innovative packet scheduling discipline 
which approximates the Dual-Class paradigm at a 
feasible computational complexity. PTTSD manages 
two distinct types of traffic flows, synchronous (i.e. 
rate-guaranteed) and asynchronous (i.e. best-effort), 
enforcing minimum rate guarantees on the first and 
servicing the second in a proportional way. More 
specifically, when synchronous flows are active, they 
are entitled to use a given amount of bandwidth, while 
asynchronous flows share most of the residual capacity 
proportionally. In order to determine the amount of 
traffic to serve from each synchronous and 
asynchronous flow, PTTSD applies at the output link of 
a switch rules based on those used to control medium 
access by the Timed Token Protocol [1], currently 
implemented in many ring-based data networks (e.g. 
FDDI). In  this paper, we discuss how PTTSD 
approximates the Dual-Class paradigm; this is done by 
means of a fluid-flow analysis of PTTSD.  

The rest of the paper is organized as follows. Section 
II introduces the Dual-Class paradigm and discusses 
possible ways to approximate it, while Section III 
describes the PTTSD. In Section IV we derive the fluid-
flow model of PTTSD, whilst in Section V we show 

how PTTSD approximates the Dual-Class Paradigm. 
Finally, Section VI draws some conclusions. 

II. DUAL-CLASS PARADIGM 
In this section we formally define the Dual-Class 

paradigm, and we then discuss possible ways to obtain a 
service discipline that approximates the DC paradigm. 

Let us focus on the output link of a switch, whose 
capacity is C  bits/s. We assume that input traffic is 
organized into flows, which are grouped into two sets: 
the first set includes R  rate-guaranteed flows, each one 
requiring a minimum rate 1 2, ,..., Rr r r  such that 

1
R

ii
r C

=
≤∑ ; the other set includes B  best-effort flows, 

each one competing for the available bandwidth with a 
weight 1 2, ,..., Bw w w , according to a GPS paradigm. 
Figure 1 shows the two flow sets. 

...

link

rate-guaranteed best-effort

r1 r2
rR w1 w2 wB...

 
Figure 1 – Flow sets in the DC paradigm 

Let us denote with ( )RB t  and ( )BB t  the set of 
backlogged rate-guaranteed and best-effort flows 
respectively at time t , and let us denote with ( )iR t  the 
instantaneous service rate of a backlogged flow at time 
t .  

Definition 1: 
We define the (non-work conserving) Dual-Class 

paradigm as the one for which, at any time instant t : 
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It is clear that Definition 1 defines a non-work 
conserving paradigm; in fact, only a non-work 
conserving paradigm can upper bound the rate of rate-
guaranteed flows when no best-effort flow is 
backlogged. 

We can restrict rate-guaranteed flows to be serviced 
at a fixed rate only when at least one best-effort flow is 
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backlogged, and define a work-conserving version of 
the DC paradigm.  

 
Definition 2: 

We define the (work-conserving) Dual-Class 
paradigm as the one for which, at any time instant t : 
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 (2) 

In the work-conserving version of the DC paradigm, 
to which we will refer hereafter, rate-guaranteed flows 
fairly share the link capacity on the basis of their 
required rates when no best-effort flow is backlogged.  

 
 
It is clear that (2) can only hold in an ideal fluid-flow 

service discipline, in which multiple flows can be 
serviced at the same time. Therefore it seems natural to 
ask if either GPS or Hierarchical GPS [17], both of 
which are fluid-flow service disciplines, exhibit the 
same behavior. We show that this is not the case by 
means of a simple example. 

Example 
Suppose that two rate-guaranteed flows i  and j  and 

best-effort flow k are scheduled under GPS, according 
to any choice of weights which enables flows i  and j  
to be served exactly at the required rate when all flows 
are backlogged. When flow i  is not backlogged, part of 
its bandwidth will go to flow j  even if k  is 
backlogged,  which is in contrast to (2). Suppose now 
that the same flow set is scheduled under a two-level H-
GPS  and that weights are selected as to provide exactly 
the required rate to i  and j  when all flows are 
backlogged. From Figure 2, which reports the only two 
possible cases, it is clear that when flow i  is not 
backlogged, at least part of its bandwidth still goes to 
flow j  even if k  is backlogged, which is in contrast to 
(2).  

 
 

The concern of managing different traffic classes is 
also a key issue of link-sharing [16]. Far from being an 
alternative to link-sharing, a DC-based service 
discipline can instead be integrated into a link-sharing 
framework to improve efficiency where sharing 
between different traffic classes is required. 

link

flow k

flow i flow j

link

flow i

flow j flow k

 
Figure 2 – Excess bandwidth redistribution in H-GPS 

It has been also observed that the integration of 
different traffic classes could be accomplished by 
employing different schedulers (e.g. one for each traffic 
class) on a time-sharing or priority basis [13], [16]. This 
approach is sometimes called multi-level scheduling, 
since it employs a top-level scheduler to decide which 
bottom-level scheduler is active when. While multi-
level scheduling would certainly increase the cost of a 
switch, to the best of our knowledge no general rules 
exist concerning what service disciplines to use at each 
level, and no general method of analysis is known.  

Two scheduling discipline which explicitly take into 
account two traffic classes, namely latency-critical (i.e. 
real-time) traffic and best-effort traffic have been 
proposed as extensions of Deficit Round-Robin. The 
first one, called DRR+ ([20]), was shown in [21] to be 
unfit to schedule latency-critical traffic in multi-hop 
networks, since it demotes it to best-effort as soon as 
any burstiness is accumulated. The second one, called 
DRR++, and presented in [21], also accounts for bursty 
latency-critical flows. To the best of our knowledge, no 
formal analysis of DRR++ has been carried out in order 
to explore what real-time guarantees can be enforced 
under what conditions. 

A unified framework which schedules two sets of 
tasks on a processor according to (2) was first proposed 
in [12], though in a different context from that of 
network scheduling. It has been proposed therein that 
the DC paradigm be approximated by coupling a 
dynamic weight management policy with the GPS-
based service discipline EEVDF. In this context, flows 
still receive service on a weight basis, but weights are 
dynamically varied according to the backlog state of the 
flows in order to approximate (2). The weight 
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management policy requires the whole set of weights to 
be recomputed at a packet timescale. Moreover, since a 
virtual time function is used to sort packets, weight 
recomputation should also imply packet resorting. 
Similar arguments can be used to show that the same 
problem also arises when other GPS-based service 
disciplines are employed, both in a flat or in a 
hierarchical framework. Therefore, DC paradigm 
approximation through a GPS-based service discipline 
does not seem to be a computationally feasible solution. 

Though devised for the very different context of 
medium access control in a token ring network, the 
Timed Token Protocol presents some features that make 
it a good starting point for developing a packet service 
discipline which approximates the DC paradigm. 
Specifically, TTP considers two traffic classes, namely 
synchronous and asynchronous. On each token visit to a 
node, synchronous traffic can be transmitted for a 
bounded time, while asynchronous traffic transmission 
time adapts to the token pace in order to keep the inter-
token time constant1. It has been proven in [2]-[6] that 
synchronous service can be used for transmitting real-
time traffic, and several simulative studies [8] show that 
the TTP offers to each node an identical opportunity to 
transmit asynchronous traffic. Moreover, asynchronous 
traffic effectively takes advantage of the bandwidth not 
used by synchronous traffic. A packet service discipline 
which services flows according to either the 
synchronous or asynchronous TTP service can be 
obtained at the same computational complexity of a 
simple round-robin scheduler. 

III. PACKET TIMED TOKEN SERVICE DISCIPLINE 
In this Section we present the Packet Timed Token 

Service Discipline, and we analyze its properties. 
PTTSD is a work-conserving frame-based service 

discipline, which manages two types of flows2: 
synchronous flows, for which a bounded transmission 
period (synchronous bandwidth3) is reserved in each 
frame, and asynchronous flows, which transmit their 
traffic depending on the frame duration. 

We will describe and analyze PTTSD under the 
assumption that it manages a set of SN  synchronous 
flows, each of which is assigned a synchronous 

                                                      
1 The algorithm performed by each node in a TTP ring is reported 

in more detail in Appendix A. 
2 The mechanisms by which incoming traffic is classified into 

flows are beyond the scope of this paper. 
3 It must be noted that, according to the TTP terminology, which 

will be broadly reused for PTTSD, the word bandwidth denotes a 
time interval. 

bandwidth hH , 1... Sh N= , and a set of AN  
asynchronous flows. We will denote with S  and A  the 
two sets. We will assume that each flow enqueues its 
packets to a separate queue.  Packets from synchronous 
flow i  have a maximum transmission time of iτ  
seconds; we denote ( )max

1..
max

S
i

i N
τ τ

=
= . 

In PTTSD, a reference frame duration TTRT  (Target 
Token Revolution Time) must be selected. This time is 
used by the asynchronous flows to bound their 
transmissions. 

a. Algorithm Definition 
In PTTSD, synchronous and asynchronous flows are 

considered for transmission in a fixed order on a round-
robin basis. Within a single round (or revolution), 
synchronous flows are considered first, followed by the 
asynchronous flows.  

Ideally, a backlogged synchronous flow i  should be 
serviced for a time iH  on each revolution. The presence 
of variable length packets – which require atomic 
transmission – clearly makes it impossible to exactly fill 
the synchronous bandwidth on each revolution. In order 
to minimize the impact of packet lengths on the 
synchronous transmission times PTTSD uses a service 
lag variable and a two-cycle mechanism similar to those 
used by Carry Over Round Robin [10]. The latter is a 
service discipline for rate-guaranteed ATM 
connections, which considers fixed length cells. 
However, our PTTSD analysis also shows that the same 
mechanism can also handle variable length packets. 
Each synchronous flow is associated with a variable i∆  
(service lag), which measures the difference between 
the service time that a backlogged synchronous flow 
required and the service time it actually received. Each 

i∆  is managed as follows: 
• reset to zero when synchronous flow i  is idle; 
• incremented by iH  on each revolution if flow i  is 

backlogged; 
• decremented by the service time flow i  receives 

when it is being serviced. 
Within a single revolution, PTTSD makes two 

consecutive sub-cycles servicing the synchronous flows 
before servicing the asynchronous ones. In the first sub-
cycle, called the major cycle, each synchronous flow i  
is serviced for a time interval less than or equal to i∆  
(i.e. a packet transmission is not allowed to start unless 
it is completed within that interval). In the subsequent 
sub-cycle, called the minor cycle, only synchronous 
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flows with 0i∆ >  are eligible for transmission, and 
only one packet per flow may be transmitted. PTTSD 
stops transmitting synchronous flows packets when all 
the eligible flows have been served in the minor cycle, 
or when a time equal to or greater than hh S

H
∈∑  has 

elapsed since the beginning of the revolution, 
whichever occurs first. Note that synchronous flows can 
be serviced until at most maxhh S

H τ
∈

+∑  units of time 

have elapsed since the major cycle has started. The 
following constraint (protocol constraint) is therefore 
required in order to guarantee that all synchronous 
flows can be properly serviced within a TTRT  time 
interval: 

maxhh S
H TTRTτ

∈
+ ≤∑  (3) 

After the minor cycle ends, PTTSD considers the 
asynchronous flows before starting a new revolution. 
Each asynchronous flow is associated with a variable 

jL  (lateness), which records the delay accumulated in 
the previous revolutions. A backlogged asynchronous 
flow j  calculates the available transmission time 
(asynchronous bandwidth) when it is visited, according 
to the following algorithm: it computes the elapsed time 
t  of the previous revolution duration (i.e. the one which 
started from the last time it was visited), subtracts 
TTRT  and adds the result to its lateness. If the latter is 
non-negative, the flow does not transmit packets (since 
this would delay the revolution for the synchronous 
flows); otherwise, the asynchronous bandwidth of the 
flow is assigned the absolute value of lateness. In this 
last case, lateness is reset to zero and the flow transmits 
its packets without exceeding its bandwidth. The 
following assertion is proved in Appendix B: 

Proposition 1 
“The algorithm performed by PTTSD to compute the 

available bandwidth for an asynchronous flow is 
equivalent to that performed by a TTP node with no 
synchronous traffic  (in the absence of failures).” 

 
As regards the initialization of the state variables 

related to new synchronous or asynchronous flow 
activation, the following simple operations are needed: 
• for a synchronous flow: set 0i∆ = ; select the 

synchronous bandwidth iH  according to the flow’s 
requirements ;  

• for an asynchronous flow: add the flow at the end of 
the asynchronous flow set; 0jL =  and assume that 

the “previous visit” occurred at the start time of the 
ongoing revolution. 

 
The pseudo-code for PTTSD is shown in Figure 3.  
 
Sync_Flow_Init (synchronous flow i) 
∆i=0; 
Select_synchronous_bandwidth Hi 
 
Async_Flow_Init (asynchronous flow j) 
Lj = 0 ; 
last_visit_timej = start_of_curr_revolution; 
 
Major_Cycle_Visit (synchronous flow i) 
∆i+=  Hi; 
q=first_packet_transmission_time; 
 
while ((∆i>=q)  and (q > 0)) 
{ transmit_packet (q); 
 ∆i -= q; 
 elapsed_time+= q;  } 
if (q=0) ∆i=0; 
 
Minor_Cycle_Visit (synchronous flow i) 
q=first_packet_transmission_time; 
if (q > 0)  
{ transmit_packet (q); 
 ∆i -= q; 
 elapsed_time += q;  } 
if (q=0) ∆i=0; 
 
Async_Flow_Visit (asynchronous flow j) 
t = current_time; 
earlyness = TTRT-Lj – (t-last_visit_timej); 
if ( earlyness > 0 ) 
{ Lj = 0; 

q=first_packet_transmission_time; 
 while ((earlyness>=q) and (q > 0)) 
 { transmit_packet (q); 
  earlyness -= q; } } 
else Lj = - earlyness; 
last_visit_timej = t; 
 
PTTSD revolution () 
  elapsed_time=0; 
  for (i=1 to NS) Major_Cycle_Visit (i); 
  i = 1; 
  while((elapsed_time<sum(Hh)) and (i<=NS)) 
 { if (∆i>0) Minor_Cycle_Visit (i); 
  i ++;   } 
  for (j=1 to NA) Async_Flow_Visit (j); 

Figure 3 - Pseudo-code for PTTSD 

IV. FLUID FLOW ANALYSIS OF PTTSD  
In order to show how PTTSD approximates the DC 

paradigm, we derived the fluid-flow model of PTTSD. 
Fluid-flow PTTSD has been obtained under the 
following assumptions: 

a) packets are infinitely divisible; 
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b) The limits
0

lim ( )i
TTRT

H TTRT
→

 exist and are finite 

1.. Si N= . 
Under assumption a), the behavior of PTTSD can be 

greatly simplified: 
- during a major cycle, a synchronous flow is 

serviced for a time equal to its synchronous 
bandwidth (provided it has enough backlog). No 
service lag is accumulated; 

- no traffic can serviced during the minor cycle, since 
every synchronous flow (either backlogged or idle) 
has a null service lag at the beginning of the minor 
cycle; 

- each asynchronous flow is serviced for a time equal 
to its asynchronous bandwidth, which is computed 
at the server visit on  the flow; 

- the protocol constraint (3) can be reformulated as 
follows: 

hh S
H TTRT

∈
≤∑  (4) 

 
This simplified model of PTTSD (which we will refer 

to as “TTSD” hereafter, since it does not consider 
packets) can be described by the following pseudo-
code.  

 
Sync_Flow_Init (synchronous flow i) 
Select_synchronous_bandwidth Hi; 
 
Async_Flow_Init (asynchronous flow j) 
Lj = 0 ; 
last_visit_timej = start_of_curr_revolution; 
 
Major_Cycle_visit (synchronous flow i) 
B = current_backlog(i); 
Transmit (min (B,Hi)); 
 
Async_Flow_Visit (asynchronous flow j) 
t = current_time; 
earliness = TTRT- Lj – (t-last_visit_timej); 
if ( earliness > 0 ) 
{ Lj = 0; 

B = current_backlog(j); 
Transmit (min (B,earliness)); 

} 
else Lj = - earliness; 
last_visit_timej = t; 
 
PTTSD revolution () 
  for (i=1 to NS) Major_Cycle_Visit (i); 
  for (j=1 to NA) Async_Flow_Visit (j); 

Figure 4- pseudo-code for TTSD 

A system model of TTSD, reported in Figure 5 can be 
built considering the parallel between the token 

circulation in a ring and the sequence of server visits in 
TTSD. We have proved in the Appendix that the 
algorithm performed when computing the bandwidth 
which the serviced asynchronous flow is entitled to is 
equal to that performed by the asynchronous subsystem 
in a TTP node. Fairly obviously, the same can be said 
for a synchronous flow. Therefore, it is possible to 
analyze the system model as it was a peculiar logical 
TTP ring.  

server
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Figure 5 – system model 

 
To construct the fluid-flow model abstraction, we 

start from the system model, and we let 0TTRT → . 
Note that this limit operation is possible since we have 
assumed 0τ = . In order for the protocol constraint to 
hold, the previous limit operation requires 0kH → , 

k S∀ ∈ . This is why we have stated assumption b) at 
the beginning of this Section. As a consequence of this 
limit operation, in any finite interval time t∆ , the token 
performs an infinite number of revolutions, each 
infinitely quickly, and each time the token visits a 
backlogged queue this receives an infinitesimal service 
according to TTSD.  

Before deriving the fluid-flow model of the system 
model, we need to investigate the timing properties of 
the latter. 
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a. Timing Properties of TTSD 
In a generic TTP network, with n nodes that can 

transmit both synchronous and asynchronous traffic, the 
following Lemma holds: 

Lemma  
For any integers x ≥ 1; l ≥ 1; c > 1; 1 ≤ y ≤ n; 1 ≤ i ≤ 

n; and 1≤ m ≤ n; if hx,y = Hy for all x,y, (x,y ≥ l,m), then, 
under the protocol constraint (4): 

1,

,
, , 1

c i n

x y h
x y c i h

a TTRT H τ
+

= =

≤ − −∑ ∑ , , 1,c i l m≥ +  (5) 

Proof 
See [5]. 

 
 
Note that the hypothesis of the Lemma requires 

synchronous transmissions to be constant starting from 
at least token visit (c-1, i). 

 
For TTSD, the above Lemma can be reformulated 

taking into account the following differences with the 
model analyzed in [5]: 
− 0τ = ; 
− left summation accounts for NA+1 consecutive 

token visits on asynchronous queues; 
− regardless of the way synchronous and 

asynchronous queues are interleaved, if the token 
starts and ends on the same asynchronous queue, it 
also visits all the NS synchronous queues in the 
meantime. 

 
Therefore, the above Lemma is reduced to: 

Lemma  
In our system model, for any integers x ≥ 1; l ≥1; c > 

1; 1 ≤ y ≤ NA; 1 ≤ i ≤ NA; and 1≤ m ≤ NS; if hz,w = Hw for 
all z,w, (z,w ≥ l,m), then, under the protocol constraint 
(4), 

1,

,
, ,

c i

x y h
x y c i h S

a TTRT H
+

= ∈

≤ −∑ ∑ ,  , 1,c i l m> +  (6) 

 
 

From the above Lemma the following corollary can be 
derived: 

Corollary 1  
In our system model, for any integers x ≥ 1; l ≥1; c > 

1; 1 ≤ y ≤ NA; 1 ≤ i ≤ NA; and 1≤ m ≤ NS; if hz,w = Hw for 

all z,w, (z,w ≥ l,m), then, under the protocol constraint 
(4) 

1, 1

,
, ,

( )
Ac N i

x y A h
x y c i h S

a N TTRT H
+ + −

= ∈

≤ −∑ ∑ , , 1,c i l m> +   (8)  

Proof 
In a system model with NA asynchronous queues, 

(NA+1) token revolutions include (NA+1)·NA token 
visits on asynchronous queues. Therefore, by applying 
NA times inequality (6), the proof follows 
straightforwardly. 

 

Note 
 If no traffic is transmitted from ϕ asynchronous 

queues out of NA from visit (c,i) to (c+NA−ϕ+1, i-1) 
(because the token is late on every visit, or because the 
queues are not backlogged), the asynchronous 
bandwidth will be shared among NA’=NA−ϕ 
asynchronous queues, and therefore Corollary 1 can be 
rewritten replacing NA with NA’.   

 
 
The above results will be used to prove Theorem A 

and Theorem B, which then lead to the following: 
- if there are late asynchronous queues and the 

protocol constraint inequality holds in a strict sense, 
the token will be early on all the asynchronous 
queues after a finite number of token revolutions; 

- if the token arrives early on all the asynchronous 
queues, it keeps arriving early as long as the 
hypothesis of the Lemma holds. 

Theorem A  
In our system model, for any integers x ≥ 1; l ≥1; c 

> 1; 1 ≤ y ≤ NA; 1 ≤ i ≤ NA; and 1≤ m ≤ NS; if: 
−  hz,w = Hw for all z,w, (z,w ≥ l,m); 
− the protocol constraint (4) holds; 
− for any given asynchronous queue i the token is 

early during the c-th visit, where , 1,c i l m> +  
 

then the token will be early on (c+1)-th visit too.  

Proof  
it follows from (6).  

1, 1 1,

1, , , ,
, , , ,

( )

c i c i

c i c i x y h x y h
x y c i h S x y c i h S

h h
h S h S

t t a H a H

TTRT H H TTRT

+ − +

+
= ∈ = ∈

∈ ∈

− = + ≤ + ≤

≤ − + =

∑ ∑ ∑ ∑

∑ ∑
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If the token is early on its c-th visit to the 
asynchronous queue i at time tc,i,  tc+1,i - tc,i ≤ TTRT is a 
sufficient condition for it being early on its (c+1)-th 
visit tc+1,i.  

 

Theorem B 
In our system model, for any integers x ≥ 1; l ≥1; c 

> 1; 1 ≤ y ≤ NA; 1 ≤ i ≤ NA; and 1≤ m ≤ NS; if: 
−  hz,w = Hw for all z,w, (z,w ≥ l,m); 
− the protocol constraint (4) holds; 
− at time t0 the token is late on at least one 

asynchronous queue,  
 

then, at worst after the following number of token 
revolutions:   

h
h S

A
h

h S

H
N

TTRT H
η ∈

∈

⎡ ⎤
⎢ ⎥

= ⋅ ⎢ ⎥−⎢ ⎥
⎢ ⎥

∑
∑

 (9)  

the token will not be late on any asynchronous queue. 

Proof 
Let us define Lc,i, “lateness” on the token’s c-th visit 

to asynchronous queue i, the quantity:  

( ){ }, , 1, 1,max 0,c i c i c i c iL t t TTRT L− −= − − +  

where L0,i=0 ∀i∈ A.  
The timing properties of the TTP ensure that – when 

the network operates correctly and under the protocol 
constraint – we have: 

 ,0 c i h
h S

L H
∈

≤ ≤ ∑  

While the lower bound for Lc,i is obvious from the 
definition, the rightmost inequality is an immediate 
consequence of “Johnson and Sevcik’s Theorem” [2]. 

 
Let us assume that at time tc,I the token is late on at 

least the asynchronous queue i. This means that at least 
one out of NA asynchronous queues is not transmitting 
anything. Therefore, from Corollary 1 it follows that: 

( )

, 1

, , ,
, ,

1

A

A

c N i

c N i c i A h x y
h S x y c i

A h A h
h S h S

A h
h S

t t N H a

N H N TTRT H

N TTRT TTRT H

+ −

+
∈ =

∈ ∈

∈

− = ⋅ + ≤

⎡ ⎤
⋅ + − ⋅ − =⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

⋅ − −⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑

∑

 

The above result implies that: 
− the time duration of NA token revolutions is less 

than or equal to NA ·TTRT; 
− after at most NA token revolutions, a time interval 

equal to hh S
TTRT H

∈
−∑ has been recovered, i.e. 

queue i lateness decreases by hh S
TTRT H

∈
−∑ . 

 
Since the maximum lateness that a queue can 

experience is upper bounded by hh S
H

∈∑ , the 

derivation of (9) is straightforward. 
 
 
It is therefore possible to say that the system model 

with constant synchronous transmissions will always 
reach a state in which:  
− if hh S

H TTRT
∈

<∑ , then the token is early on 

each queue visit after at most γ revolutions ;  
− if hh S

H TTRT
∈

=∑ , then a null quantity of 

asynchronous traffic can be transmitted.  
 
This state, which will be named stationary state, is 

always reached in a finite interval time. 
A similar result has been proven [22] for an FDDI 

network in which the effects of accumulated lateness 
are neglected, i.e. the Lc counters are always reset upon 
a token arrival. Our improvements with respect to [22] 
are: 
• the proof that such a state is always reached in a 

finite number of token revolutions even if lateness is 
taken into account; 

• an upper bound to these revolutions, quantified by 
(9). 

 

b.  Asynchronous vector 
We will now focus on the evolution of the 

asynchronous traffic in the stationary state, under the 
hypothesis that the asynchronous queues are always 
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backlogged. The rationale behind it will be explained in 
Section IV.c 

 
Let (c*,1) be the c*-th token visit on asynchronous 

queue 1 in the stationary state. Having assumed that 
every asynchronous queue is always backlogged, 
Lemma ensures that: 

* 1,1

,
, *,1

c

x y h
x y c h S

a TTRT H
+

= ∈

= −∑ ∑  

Let us now define the following vector 
0, 1,[ , ]

ANV V V=V K  of NA+1 components: 

*,
*,

0 , * 1,1
, *,1

1...

( )
A

i c i A
c N

h x y c
h S x y c

V a i N

V TTRT H a a +
∈ =

= =⎧
⎪⎪
⎨ = − − =⎪
⎪⎩

∑ ∑
 

Notice that all the vector’s elements are known at 
time *, Ac Nt , i.e. within a single token revolution. We 
will call vector V the asynchronous vector of token 
revolution c*. 

 
Let us now instantiate (6) to (c*,2): 
* 1,2 * 1,1

, , * 1,2 *,1
, *,2 , *,1

c c

x y x y c c h
x y c x y c h S

a a a a TTRT H
+ +

+
= = ∈

= + − = −∑ ∑ ∑
 

Similarly,  

* 1,3 *,2 2 * 1, *, 1 1 , ...
A A Ac c c N c N Na a V a a V+ + − −= = = =   

* 2,1 *, * 2,2 * 1,1 0 ,   
Ac c M N c ca a V a a V+ + += = = =   

Since 
* 1,1

,
, *,1

c

x y h
x y c h S

a TTRT H
+

= ∈

= −∑ ∑ , it must be ac*+1,2 

= ac*,1 =V1.  
 
From the above recurrence formulas, it is 

straightforward to prove: 

Corollary 2 
When the system model is in the stationary state, if 

the asynchronous vector related to token rotation c* is 
known, then: 

[ ], ( *) mod ( 1)Ac j j c c Na V − − += , ∀c ≥ c*, 1 ≤ j ≤ NA  (10) 

Proof 
The proof is obvious, and is thus omitted.  

 
 
Equality (10) shows that the sequence of 

transmissions from each asynchronous queue is 
periodic, with a period of  (NA+1) token revolutions4. 

 

Corollary 3 
When the system model is in the stationary state, the 

service difference between any two backlogged 
asynchronous queue over any time interval is upper 
bounded by: 

,i j hh S
TTRT Hη

∈
= −∑ ,   1 ≤ j ≤ NA  (11) 

Proof 
The proof is obvious, and is thus omitted.  

 

Note: 
In the stationary state, if we assume that the 

asynchronous queues are always backlogged, the 
average token revolution time depends on the number 
of asynchronous queues NA: it is clear from Corollary 1 
that NA+1 token revolutions have a duration of: 

( 1) ( )

( 1) ( )

A h A hh S
h S

A hh S

N H N TTRT H

N TTRT TTRT H

∈
∈

∈

+ ⋅ + ⋅ − =

+ ⋅ − −

∑ ∑

∑
 

This means that the average token rotation time is: 

( 1) ( )

1

( )

1

A hh S

A

hh S

A

N TTRT TTRT H

N

TTRT H
TTRT

N

∈

∈

+ ⋅ − −
=

+

−
−

+

∑

∑
  

Clearly, the bigger NA is, the closer to TTRT the 
average token rotation time is. Note that the only two 
cases in which in the stationary state the average token 
rotation time is equal to TTRT are NA=∞ and 

hh S
H TTRT

∈
=∑ . For finite NA values and if 

inequality holds in the protocol constraint, the average 
token revolution time is less than TTRT in the stationary 
state. Since a synchronous queue k  is served for a time 
Hk on each token visit, keeping the token revolution 
time close to TTRT means keeping the rate at which a 

                                                      
4 Clearly, if equality holds in the protocol constraint, 

asynchronous transmissions are always null, and therefore 
periodical. 
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synchronous queue can be served close to (but higher 
than) Hk  / TTRT.  

 

c. Fluid-flow rates 
In this section, we first detail the procedure for 

obtaining the fluid-flow model, which, as stated before,  
requires the limit operation 0TTRT → . 

After that, we calculate the instantaneous rates for 
each synchronous and asynchronous flow. To achieve 
this, we observe the behavior of the fluid-flow model in 
a time interval [ , )t t t+ ∆  in which we assume that the 
state of each queue (empty or backlogged) will not 
change, and we let 0t∆ → . Obviously, there exists a 

*t∆  (equal to the minimum backlog among all the 
queues at time t ) such that for any *t t∆ ≤ ∆  the fluid-
flow model exhibits such a property. Note that the order 
in which the above limit operations are carried out is 
fundamental, since it makes no sense to calculate 
instantaneous rates in a polling model with finite 
sojourn times. 
− on each token visit, backlogged queues always hold 

the token for the maximum allowed time; 
− the asynchronous queues can be partitioned into 

two disjoint subsets: one backlogged, which 
includes queues with indexes 1 2, ,..., Mα α α , 

1 21 ... M ANα α α≤ ≤ ≤ ≤ ≤ ,  and the other includes 
empty queues; 

− the synchronous queues can be partitioned into two 
disjoint subsets: one backlogged, which includes 
flows with indexes 1 2, ,..., Kσ σ σ , 

1 21 ... K SNσ σ σ≤ ≤ ≤ ≤ ≤ ,   and the other 
including empty queues. 

Let us denote by { }1 2 ( )( ) , ,...,A M tB t α α α=  and 

{ }1 2 ( )( ) , ,...,S K tB t σ σ σ=  the subsets of backlogged 

queues previously defined; clearly, the cardinality and 
composition of ( )AB t  and ( )SB t  are time varying. We 
denote with ( )M t  the cardinality of ( )AB t .  

Since our goal is to find timing properties that hold in 
the time interval [ , )t t t+ ∆ , queues that are never 
backlogged in [ , )t t t+ ∆  need not be considered. Thus, 
in the proof process of Theorem C, summations on 
asynchronous/synchronous queues will be performed on 
subsets ( )AB t  and ( )SB t  respectively.  In order to 
simplify the notation drastically, we will use the 
subscript 1... ( )M t instead of 1 2, ,..., Mα α α .  

Theorem C 
If the limit ( )

0
 limk kTTRT
C H TTRT

→
=  exists and is 

finite  k S∀ ∈ , then the instantaneous normalized rates 
at which synchronous and asynchronous queues are 
served in the fluid-flow model at time t are, 
respectively: 

[ ]( )

( )

( ) 1
 ( )  

( )
S

kS
k

h
h B t

M t C
R t

M t C
∈

+ ⋅
=

+ ∑
( )Sk B t∀ ∈  (12) 

( )( )

( )

1

 ( ) 
( )

S

S

h
h B tA

j
h

h B t

C

R t
M t C

∈

∈

−

=
+

∑

∑
 ( )Aj B t∀ ∈  (13) 

Proof 
Let us distinguish two cases: 

( )S
hh B t

H TTRT
∈

=∑ and 
( )S

hh B t
H TTRT

∈
<∑ .  

Case 1 
If 

( )S
hh B t

H TTRT
∈

=∑ , then 
( )

1
S

hh B t
C

∈
=∑ , i.e. 

only synchronous queues are served.  As a 
consequence, ( ) ( ) S

kkR t C= , and ( ) ( ) 0 A
jR t = , and 

therefore (12) and (13) are obviously verified. 

Case 2 

( )S
hh B t

H TTRT
∈

<∑ . Let us refer to Figure 6, where 

t  is the time at which system observation starts for an 
interval time t∆ . We assume that from t  onward 
synchronous transmissions remain constant, and 
therefore the Lemma hypothesis holds. In the most 
general case the system will experience a transitory 
phase which has been proved to be finite by Theorem B. 
Let 1t  be the time instant at which the system reaches 
the stationary state, and let us count from 0 onward the 
token revolutions beginning from 1t .  

timet t1

transitory stationary state

rev. 0 rev. 1 rev. srev. s-1
t+∆t

......
 

Figure 6 – Transmissions in the time interval [ , )t t t+ ∆  

As proved in Corollary 2, in s  token revolutions 
asynchronous queue j  can rely on the following 
service time: 
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( ) ( )

1

, ( )
0

1

mod ( ) 1
0

( ) 1 S

s

c j hh B t
c

r

j l M t
l

sa TTRT H
M t

V

−

∈
=

−

− +
=

⎢ ⎥ ⎡ ⎤= ⋅ −⎢ ⎥ ⎢ ⎥⎣ ⎦+⎣ ⎦

+

∑ ∑

∑
 (14)

where: 

( )( ) 1s q M t r= ⋅ + + , 

 
( ) 1
sq

M t
⎢ ⎥

= ⎢ ⎥+⎣ ⎦
, { }0, 1,...q∈ ,  0 ( )r M t≤ ≤  

From Figure 6 it follows: 

( )
( )1

1 ,
0 1 ( )S

M ts

c j h
c j h B t

t TTRT t t a H t
−

= = ∈

⎡ ⎤
⎢ ⎥∆ − ≤ − + + ≤ ∆
⎢ ⎥⎣ ⎦

∑ ∑ ∑
 

After some algebraic manipulations and bearing in 
mind (14), we obtain: 

 

 
 

( )
( ) 1

1 ( ) mod( ( ) 1)
( ) ( ) 0 1

( )
( ) 1

S S

M t r

h h j l M t
h B t h B t j l

st TTRT t t s H M t TTRT H V t
M t

−

− +
∈ ∈ = =

⎡ ⎤⎢ ⎥ ⎢ ⎥∆ − ≤ − + ⋅ + ⋅ ⋅ − + ≤ ∆⎢ ⎥+ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑ ∑∑   (15) 

 
 
Let us take the limit TTRT→0 of (15). When 

TTRT→0, s→∞. Since the first and fourth addenda in 
(15) are O(TTRT), they both tend to 0. Furthermore, 
since the second and third addenda are O(s ·TTRT), (15) 
is reduced to: 

( )

0

( )
lim

( ) 1
S

hh B t

TTRT

M t TTRT H
s t

M t
∈

→

⎧ ⎫⋅ +⎪ ⎪⋅ = ∆⎨ ⎬
+⎪ ⎪⎩ ⎭

∑
 (16)

If ( )
0

 limk kTTRT
C H TTRT

→
=  exists and is finite, (16)

leads to: 

( )
0

( )

( ) 1lim
( )

S

TTRT h
h B t

M ts TTRT t
M t C→

∈

+
⋅ = ∆ ⋅

+ ∑
 (17) 

Let ( ) ( , )S
kW t t t+ ∆  and ( ) ( , )A

jW t t t+ ∆  be the service 
time received by synchronous queue k  and 
asynchronous queue j respectively in the time interval 
[ , )t t t+ ∆ . By definition: 

( )
( ) 0

0

lim ( , )
( ) lim

S
kS TTRT

k t

W t t t
R t

t
→

∆ →

⎧ ⎫+ ∆⎪ ⎪= ⎨ ⎬
∆⎪ ⎪⎩ ⎭

 (18) 

( )
( ) 0

0

lim ( , )
( ) lim

A
jA TTRT

j t

W t t t
R t

t
→

∆ →

⎧ ⎫+ ∆⎪ ⎪= ⎨ ⎬
∆⎪ ⎪⎩ ⎭

 (19) 

We have: 

[ ]( )
0

( )

( ) 1
lim ( , )

( )
S

kS
kTTRT h

h B t

M t C
W t t t t

M t C→

∈

+ ⋅
+ ∆ = ⋅∆

+ ∑
  (20) 

while on the other hand, since : 
1

( )
,

0 0 0
lim ( , ) lim

s
A

c jjTTRT TTRT c
W t t t a

−

→ → =

⎡ ⎤
+ ∆ = ⎢ ⎥

⎢ ⎥⎣ ⎦
∑   

from (14) and (17): 

( )
0

( )

1

lim ( , )
( )

S

S

h
h B (t)A

jTTRT h
h B t

- C

W t t t t
M t C

∈

→

∈

+ ∆ = ⋅∆
+

∑

∑
 (21) 

By substituting (20) and (21) into (18) and (19), the 
thesis follow straightforwardly. 

 
 

d. Worst-Case Timing Properties of TTSD 
We now derive the worst-case token return time for a 

synchronous flow in TTSD. 

Generalized Johnson and Sevcik’s Theorem for TTSD 
Let k S∈  be a synchronous queue in our system 

model; let NA be the cardinality of the asynchronous 
queues set A. Then, for any integer 1x ≥ , 1v ≥ , under 
the protocol constraint (4): 
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, ,
,

1

x v k x k h
h S h k

h
A h S

t t v TTRT H

v TTRT H
N

+
∈ ≠

∈

− ≤ ⋅ +

⎡ ⎤⎢ ⎥
− ⋅ −⎢ ⎥⎢ ⎥+ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑

∑
 (22) 

Proof 
The proof process closely follows the one given in 

[5] for a generic TTP network. A worst-case scenario 
for the token return time at synchronous queue k can be 
defined as follows: 
• no transmission (either synchronous or 

asynchronous) takes place from 1,x kt t −=  to ,x kt t=  
inclusive, i.e. during the token revolution that 
precedes ,x kt t= . 

• synchronous queue k  becomes backlogged at the 
time instant ,x kt t+= . 

• Every synchronous and asynchronous queue is 
backlogged from time ,x kt t+=  onwards, and 
therefore every queue holds the token for the 
maximum time allowed by the TTP rules. 

Such a scenario has been proved to be the worst-case 
for a TTP network in [6].  
 
Sub-case 1: v=1. 
Regarding the first token revolution following ,x kt t= , 
it is possible to say that: 
- if the first queue visited by the token after ,x kt t=  is 

an asynchronous one, it will hold the token for a 
time interval equal to TTRT (recall pseudo-code in 
Figure 4); 

- any synchronous queue h will hold the token for a 
time interval hH ; 

 
the above two statements yield: 

, ,
,

x v k x k h
h S h k

t t TTRT H+
∈ ≠

− = + ∑  (23) 

which is only reached in a worst-case scenario, and 
therefore inequality (22) holds for v=1. 
 
Sub-case 2: v>1. 

The time interval 1, ,[ , )x k x v kt t+ +  includes ( )1v −  
complete token revolutions. Based on the worst-case 
scenario definition, the following statements can be 
assessed: 

- the overall synchronous transmission within the 
time interval 1, ,[ , )x k x v kt t+ +  is:  

( )1 hh S
v H

∈
− ⋅∑  (24) 

- starting from the first token visit on an 
asynchronous queue following time 1,x kt + , the 
hypothesis of the Lemma holds; we can then apply 
it for any group of consecutive 1AN +  token visits 
on asynchronous flows, for an overall number of 
visits equal to ( )1 1Av N− ⋅ − . Therefore, it is 
possible to state that the overall asynchronous 
transmission within the time interval 1, ,[ , )x k x v kt t+ +  
is upper bounded by: 

( )

( 1) 1
1

1
1

A
h

A h S

h
A h S

v N TTRT H
N

vv TTRT H
N

∈

∈

⎛ ⎞⎡ ⎤− ⋅ −
⋅ − =⎜ ⎟⎢ ⎥ ⎜ ⎟+⎢ ⎥ ⎝ ⎠

⎛ ⎞⎡ ⎤⎢ ⎥
− − ⋅ −⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟+⎢ ⎥⎣ ⎦⎣ ⎦ ⎝ ⎠

∑

∑
 (25) 

Putting (23), (24) and (25) together, after a few 
algebraic manipulations, we obtain: 

, ,
,

1

x v k x k h
h S h k

h
A h S

t t v TTRT H

v TTRT H
N

+
∈ ≠

∈

− = ⋅ +

⎡ ⎤⎢ ⎥
− ⋅ −⎢ ⎥⎢ ⎥+ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑

∑
 (26) 

Since (26) has been calculated in a worst-case 
scenario, for every possible scenario (22) holds.  

 
 
Note that inequality (22) also holds if 0AN = . 
However, in this particular case, tighter bounds can 
easily be derived. 

V. PTTSD AS AN APPROXIMATION OF THE DC PARA-
DIGM 

Let us denote with ( )iR t  the instantaneous service 
rate of a generic flow at time t . At any time instant t , 
under fluid-flow PTTSD the service rate of a 
backlogged flow is: 
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[ ]

( )

( )

( )

( ) 1
( )

( )

( ) 1

( )
( )

S

S

S

i
S

j
j B t

i j
j B t

A
j

j B t

M t h
C i B t

M t h

R t h

C i B t
M t h

∈

∈

∈

⎧ + ⋅
⋅ ∈⎪

+⎪
⎪⎪= ⎨ −
⎪
⎪ ⋅ ∈

+⎪
⎪⎩

∑

∑

∑

 (27) 

Synchronous flow rates are not constant, since they 
depend on the number of backlogged asynchronous and 
synchronous flows. However, it is straightforward to 
see that, as the number of backlogged asynchronous 
flows increases, the synchronous service rates 
approaches a minimum value ih C⋅ . Therefore, the 
service offered to backlogged asynchronous flows 
upper bounds the synchronous flow rates. On the other 
hand, each asynchronous flow always obtains an equal 
share of the available bandwidth.  

When ( )M t  is high, (27) can be rewritten as: 

( )

( )

( ) 1 1 ( )
( )

S

i S

i
j A

j B t

h C i B t

R t
h C i B t

M t ∈

⋅ ∈⎧
⎪⎪ ⎛ ⎞≅ ⎨ ⎜ ⎟− ⋅ ∈⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

∑
 (28) 

Expression (28) is formally equal to that obtained 
from (2) in the particular case where best-effort flows 
weights are all equal. Note that, when no asynchronous 
flow is backlogged (i.e. ( ) 0M t = ), (27) yields: 

( )

( ) ( )

S

i
i S

j
j B t

hR t C i B t
h

∈

= ⋅ ∈
∑

 

Therefore, fluid-flow PTTSD embodies the DC 
paradigm when no asynchronous flow is backlogged 
and approximates an unweighted version when 
asynchronous flows are backlogged.  

The approximation improves as the number of back-
logged asynchronous flows increases. Figure 7 and 
Figure 8 show the ratio between the (synchronous and 
asynchronous) rates in fluid-flow PTTSD (27) and in 
the ideal case (28) against ( )M t  and for various syn-
chronous loads 

( )S
jj B t

h
∈∑ . Both figures show that a 

good approximation of the DC paradigm (within 10%) 
is achieved when as few as ten asynchronous flows are 
backlogged. 
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Figure 8 – normalized asynchronous rates 

 

VI. CONCLUSIONS 
In this paper we have introduced an innovative 

scheduling paradigm, the Dual Class paradigm, 
showing that it can be taken as a reference to devise 
efficient services disciplines for integrated services 
networks. Specifically, the DC paradigm considers the 
simultaneous presence of both rate-guaranteed and best-
effort traffic, and maximizes the service given to best-
effort traffic while meeting the rate guarantees. We 
have devised a new service discipline, called PTTSD, 
which manages at the same time both rate-guaranteed 
(synchronous) and best-effort (asynchronous) traffic. 
We have showed that PTTSD approximates the Dual 
Class paradigm by means of a fluid-flow analysis.  

 

APPENDIX A: TIMED TOKEN PROTOCOL 
The Timed Token Protocol has been used as a MAC 

protocol by the FDDI technology and other network 
standards. In the following, we describe the TTP as it is 
implemented in FDDI, and therefore we refer to a 
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physical ring with n nodes attached to it. Transmission 
rights are granted by the circulation of a special packet, 
called token. The TTP accounts for two distinct classes 
of traffic on each node: synchronous traffic, which is 
transmitted for a time duration up to a given maximum 
on each token visit, and asynchronous traffic, which can 
only be transmitted if the token arrives earlier than 
expected. 

At ring initialization, a target token rotation time 
(TTRT ) is selected. Any node that supports 
synchronous traffic is then assigned a portion 0iH ≥  of 
TTRT  to transmit it. Each node has two timers: the 
Token Rotation Timer (TRT ), and the Token Holding 
Timer (THT ). The TRT  always counts down and a 
node’s THT  counts down only when the node is 
transmitting asynchronous traffic. If a node’s TRT  
reaches 0 before the token arrives at the node, TRT  is 
reset to TTRT  and the arriving token is marked as late 
by incrementing the node’s late counter Lc  by one. At 
ring initialization, Lc  is set to 0 on each node. 

Only the node which possesses the token is able to 
transmit. When node  receives the token, it does the 
following: 
• if 0Lc > , sets : 1Lc Lc= −  and : 0THT =  

Otherwise, :THT TRT=  and :TRT TTRT= ; 
• if it has synchronous traffic, it transmits it until 

either a period iH  has elapsed or all the 
synchronous traffic has been transmitted, whichever 
occurs first; 

• if it has asynchronous traffic, it transmits it until the 
THT  counts down to 0 or until all its asynchronous 
traffic has been transmitted, whichever occurs first; 
note that a transmission which is already in progress 
when THT  expires is always completed 
(asynchronous overrun); 

• it passes the token to the next node on the ring. 
The choice of synchronous bandwidths (or 

synchronous capacities) hH , 1...h n= , must obey the 
following constraint: 

1.. hh n
H TTRT τ

=
≤ −∑  

called the protocol constraint, where  (the latency) is 
the portion of token rotation time which is unavailable 
for traffic transmission, due to protocol and media 
dependent overheads and to the occurrence of 
asynchronous overruns [2]. 

The timing properties of the TTP have been widely 
explored over the last two decades ([2]-[7]). Two very 

well known results related to the TTP timing properties 
are as follows:  
• under the protocol constraint, the maximum token 

revolution time is upper bounded by 2 TTRT⋅ , and 
the average token revolution time is upper bounded 
by TTRT  [2]; 

• it is possible to identify the worst-case scenario for 
the token return time [6], and to calculate the worst-
case v -th token return time for any 1v ≥  
(Generalized Johnson and Sevcik’s Theorem) [5]. 

APPENDIX B: PROOF OF PROPOSITION 1 

Proposition 1 
“The algorithm performed by PTTSD to compute the 

available bandwidth for an asynchronous flow is 
equivalent to that performed by a TTP node with no 
synchronous traffic (in the absence of failures).” 

Proof 
Let us suppose that j  is a TTP node, and let us 

denote with ,c jt  the time instant at which the token 
reaches node j  for c -th time. We will use the same 
subscript pair for denoting quantities related to node j  
sampled at the c -th token visit. We now compute the 
asynchronous bandwidth in of node j  at time ,c jt , 
under the hypothesis that it has no synchronous traffic, 
according to the TTP rules reported in Appendix A. We 
need to distinguish two cases: 

Case 1: the token was late on the previous visit at node 
j  

In this case, at time 1,c jt −  we have 0Lc ←  (note that 
1Lc =  just before the token arrival) and TRT  is not 

reset. Let us denote with 1,c jL −  the difference 
0TTRT TRT− >  at time 1,c jt − . Since TRT  always 

counts down, the necessary and sufficient condition for 
the token to be early at time ,c jt  is that TRT  has not 
expired yet, i.e. , 1, 1,c j c j c jt t TTRT L− −− ≤ − . In that 
case, at time ,c jt , we have:  

( )1, , 1,c j c j c jTRT TTRT L t t− −= − − −   

and THT TRT= , and the available asynchronous 
bandwidth for node j  is thus: 

( )1, , 1,c j c j c jTTRT L t t− −− − − .  
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If the above condition is not verified, at time ,c jt  the 

TRT  value is ( )1, , 1,2 c j c j c jTTRT L t t− −− − − . 

Case 2: the token was early on the previous visit at 
node j  

In this case, at time 1,c jt −  we had 0Lc ←  (note that 
0Lc =  just before the token arrival) and 

TRT TTRT← . Therefore, the same formulas of case 1 
also apply to this case, provided  that we set 1, 0c jL − = . 

 
The above two cases can be summarized as follows: 
The token is early on its c -th visit to node j  if and 

only if: 

, 1, 1,c j c j c jt t TTRT L− −− ≤ −  

In that case the asynchronous bandwidth is: 

( )1, , 1, 0c j c j c jTTRT L t t− −− − − ≥  

and , 0c jL = . 
Otherwise, the asynchronous bandwidth is null and: 

( )
( )

, 1, , 1,

1, , 1,

2c j c j c j c j

c j c j c j

L TTRT TTRT L t t

TTRT L t t

− −

− −

⎡ ⎤= − − − −⎣ ⎦
⎡ ⎤= − − − −⎣ ⎦

 

Therefore, assuming that node j  can manage two 
variables jL  and jt , which are correctly initialized at 
ring startup, in order to compute the asynchronous 
bandwidth of a TTP node with no asynchronous traffic 
on token arrival, the following algorithm can be 
performed: 
a) compute ( )j jb TTRT L now t= − − − ; 

b) if the latter is positive, it represents the available 
asynchronous bandwidth; set 0jL ← ; 

c) otherwise, the available asynchronous bandwidth is 
null; set jL b←− ; 

d) set jt now← . 
Which is exactly what the Async_Flow_Visit 

procedure in the pseudo-code of Figure 3 does. 
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