Network Calculus: A worst-case theory for QoS guarantees in packet networks

Giovanni Stea

Computer Networking Group Department of Information Engineering University of Pisa, Italy

Computer Networking Group Architectures, Protocols and Performance Evaluation

Università di Pisa

IMT Lucca, Oct 28, 2009

Outline

- Motivation
 - Performance analysis of real-time traffic
 - Why classical queueing theory is unfit
- Network Calculus
 - Basic modeling: arrival and service curves
 - Concatenation, bounds
 - "Pay burst only once" principle / IntServ
 - Advanced modeling: aggregate scheduling
 - Stochastic Network Calculus

Real-time traffic

- Expected to represent the bulk of the traffic in the Internet soon
 - Skype users: 10⁷-10⁸
 - Cisco white paper: video traffic volume to surpass P2P in 2010
- Revenue-generating only if reliable
- Reliability boils down to "packets meeting deadlines"
 - End-to-end delay bounds are required

IMT Lucca, October 28, 2009

Performance analysis

- Tagged flow (of packets) traversing a path
- Cross traffic

Dipartimento di Ingegneria della Informazione

Dipartimento di Ingegneria della Informazione

- Many queueing points (routers)
- How to compute a bound on the e2e delay?

Performance analysis (2)

- Service Level Agreement with upstream neighbor
 - I will carry

Dipartimento di Ingegneria della Informazione

- up to X Mbps of your traffic
- from A to B

IMT Lucca, October 28, 2009

- within up to Y ms (!!)
- for Z\$

Network Calculus and Queueing Theory

- 100 years of Queueing Theory
 - 1909. A. K. Erlang "The Theory of Probabilities and Telephone Conversations".
 - Originated in the area of telecommunications
 - Developed and applied in a variety of areas
 - Erlang Centennial held in Denmark, April 2009.
- ~20 years of Network Calculus
 - 1991. R. L. Cruz, "A Calculus for Network Delay".
 - Recent development of queueing theory for computer networks

Dipartimento di Ingegneria della Informazione

NC and Queueing Theory (2)

- Queueing theory requires models for traffic
 - Simplistic models required for tractability
 - What if the traffic mix changes?

Dipartimento di Ingegneria della Informazione

- New applications (social networks, etc.)
- Flash crowds (e.g., a football match)
- Topology modifications (routing, link upgrades)

7

- Queueing theory mainly concerned with average performance metrics
 - Real-time traffic needs bounds

IMT Lucca, October 28, 2009

Modeling a queueing point with NC (2)

- <u>Minimum</u> service over a <u>maximum</u> interval
 - A minimum guaranteed rate
 - With a latency (when the server is away)
 - The latency is upper bounded
- Round robin schedulers (DRR, PDRR, ...)
- Fair Queueing schedulers (PGPS, WFQ, WF2Q, STFQ, SCFQ, ...)
- Strict priority (for the queue at highest prio)

Example: a priority scheduler

Strict non preemptive priority, queue scheduled at top priority

Service curve: summarizes the service received in a worst case by a backlogged tagged flow

Models the presence of other queues

Rate-latency service curves most common in practice

Modeling a queueing point with NC (3) Dipartimento di Ingegneria della Informazione Worst-case behavior for my queue: served at minimum rate • with **maximum** latency **FIFO** queues FIFO queues F1 P2 Single queue server with Multi-queue latency scheduler capacity capacity С <u>R<C</u> F2 P1 F2 P2 IMT Lucca, October 28, 2009 13

Modeling a queueing point with NC (4) Nodes transform functions of time Dipartimento di Ingegneria della Informazione Server <u>with</u> latency D(t)capacity R<C oits D(t)A(t) $D(t) \ge A \otimes \beta(t)$ $A(t_0)$ $A \otimes \beta(t) =$ Delay at to Backlog at t₀ $\inf_{0 \le s \le t} \left\{ A(s) + \beta(t-s) \right\}$ $D(t_0)$ $\int_0^t A(s) \cdot \beta(t-s) ds$ time IMT Lucca, October 28, 2009 14

<page-header><page-header><section-header><page-header>

Traffic aggregation

- Aggregation as "the" solution for <u>scalable</u> provisioning of QoS in core networks
- Internet:
 - Differentiated Services
 - MPLS

Dipartimento di Ingegneria della Informazione

Per-flow resource management (e.g., packet scheduling) just doesn't scale

Performance evaluation problem

- Users care about *their flows*, not aggregates
- Users want <u>e2e delay bounds</u>, not per-node forwarding guarantees

How to compute *per-flow* end-to-end delay bounds from *per-aggregate* per-node guarantees?

^ኛ IMT Lucca, October 28, 2009

Performance Analysis

- Tandem network of FIFO rate-latency elements
- All nodes have a rate-latency SC for the aggregate
- All flows have a leaky-bucket AC

The LUDB methodology

- An **n-dimensional infinity** of e2e SCs for the tagged flow
 - n = # of cross-flows
- Delay bound = fn. of n parameters

• <u>Step 2</u>

Dipartimento di Ingegneria della Informazione

Dipartimento di Ingegneria della Informazione

• Solve an optimization problem

$$LUDB = \min_{\tau_i \ge 0} \left\{ D(\tau_1, \dots, \tau_n) \right\}$$

• The minimum is the **best**, i.e. **tightest**, delay bound IMT Lucca, October 28, 2009

Nested vs. non-nested tandems

- - You can <u>only</u> compute an e2e SC for the tagged flow in a nested tandem

Two important points

- The LUDB method:
 - 1. Is scalable enough
 - You can use it in paths of 30+ nodes
 - 2. Yields accurate bounds
 - Close to a flow's Worst-Case Delay
 - (Sometimes)

Dipartimento di Ingegneria della Informazione

Ref: L. Bisti, L. Lenzini, E. Mingozzi, G. Stea, "Estimating the Worstcase Delay in FIFO Tandems Using Network Calculus",

Proc. VALUETOOLS'08, Athens, Greece, October 21-23, 2008

IMT Lucca, October 28, 2009

Network Calculus", *submitted to journal*, 2008

Stochastic Network Calculus

- Brings in a probabilistic framework
 - Better captures statistical multiplexing
 - Concatenation results still hold

deterministic stochastic $D(t) \ge A \otimes \beta(t)$ $P\{A \otimes \beta(t) - D(t) > x\} \le g(x)$

- Currently active field of research
 - SIGMETRICS, VALUETOOLS

Conclusions

- Network Calculus allows one to compute e2e delay bounds
 - **Easy** and **tight** in a per-flow scheduling environment
 - **Complex** and **not always tight** in an aggregate-scheduling environment
- Only method known so far
- Stochastic extensions: promising research area
 - Better account for statistical multiplexing

IMT Lucca, October 28, 2009

Dipartimento di Ingegneria della Informazione

Dipartimento di Ingegneria della Informazione

References

- 1. J.-Y. Le Boudec, P. Thiran, Network Calculus, Springer LNCS vol. 2050, 2001 (available online).
- 2. C. S. Chang, Performance Guarantees in Communication Networks, Springer, New York, 2000.
- 3. Y. Jiang, Y. Liu, "Stochastic Network Calculus", Springer 2008
- 4. R.L. Cruz. "A calculus for network delay, part i: Network elements in isolation". IEEE Transactions on Information Theory, Vol. 37, No. 1, March 1991, pp. 114-131.
- 5. R.L. Cruz. "A calculus for network delay, part ii: Network analysis". IEEE Transactions on Information Theory, Vol. 37, No. 1, March 1991, pp. 132–141.

More references

- 1. L. Lenzini, E. Mingozzi, G. Stea, "A Methodology for Computing End-toend Delay Bounds in FIFO-multiplexing Tandems" Elsevier Performance Evaluation, 65 (2008) 922-943
- 2. L. Lenzini, L. Martorini, E. Mingozzi, G. Stea, "Tight End-to-end Per-flow Delay Bounds in FIFO Multiplexing Sink-tree Networks", Elsevier Performance Evaluation, Vol. 63, Issues 9-10, October 2006, pp. 956-987
- 3. L. Lenzini, E. Mingozzi, G. Stea, "Delay Bounds for FIFO Aggregates: a Case Study", Elsevier Computer Communications 28/3, February 2005, pp. 287-299
- 4. L. Bisti, L. Lenzini, E. Mingozzi, G. Stea, "Estimating the Worst-case Delay in FIFO Tandems Using Network Calculus", Proceedings of VALUETOOLS'08, Athens, Greece, October 21-23, 2008
- 5. L. Lenzini, E. Mingozzi, G. Stea, "End-to-end Delay Bounds in FIFOmultiplexing Tandems", Proc. of VALUETOOLS'07, Nantes (FR), October 23-25, 2007.
- L. Lenzini, E. Mingozzi, G. Stea, "Delay Bounds for FIFO Aggregates: a Case Study", Proceedings of the 4th COST263 International Workshop on Quality of Future Internet Services (QoFIS '03), Stockholm, Sweden, October 1-3, 2003 LNCS 2811/2003, pp. 31-40

IMT Lucca, October 28, 2009

Thank you for listening

- Questions?
- Comments?